Skip to content

Dataset Module

SRToolkit.dataset

This module contains data sets and benchmarks for symbolic regression. A dataset represents a single equation with specific data, constraints for evaluation, etc. A benchmark is a collection of datasets. Our library provides the user with two modified version of popular equation discovery benchmarks. Specifically Feynman and Nguyen.

Modules:

Name Description
sr_dataset

The module containing the SRDataset class, which can be used to create a dataset and easily evaluate equation discovery approaches.

sr_benchmark

The module containing the SRBenchmark class, which can be used to create a benchmark i.e. a collection of datasets.

SRDataset

Source code in SRToolkit/dataset/srdataset.py
class SRDataset:
    def __init__(self, X: np.ndarray, y: np.ndarray, ground_truth: List[str], original_equation: str,
                 symbols: SymbolLibrary, max_evaluations: int=-1, max_expression_length: int=-1, max_constants: int=8,
                 success_threshold: float=1e-7, constant_range: List[float]=None, dataset_metadata: dict=None):
        """
        Initializes an instance of the SRDataset class.

        Args:
            X: The input data to be used in parameter estimation for variables. We assume that X is a 2D array
                with shape (n_samples, n_features).
            y: The target values to be used in parameter estimation.
            ground_truth: The ground truth expression, represented as a list of tokens (strings) in the infix notation.
            original_equation: The original equation from which the ground truth expression was generated).
            symbols: The symbol library to use.
            max_evaluations: The maximum number of expressions to evaluate. Less than 0 means no limit.
            max_expression_length: The maximum length of the expression. Less than 0 means no limit.
            max_constants: The maximum number of constants allowed in the expression. Less than 0 means no limit.
            success_threshold: The RMSE threshold below which the experiment is considered successful.
            constant_range: A list of two floats, specifying the lower and upper bounds for the constant values.
                Default is [-5.0, 5.0]. If constant_range is None, we automatically set it to [-5.0, 5.0]
                if the symbol library contains a symbol for constants.
            dataset_metadata: An optional dictionary containing metadata about this evaluation. This could include
                information such as the name of the dataset, a citation for the dataset, number of variables, etc.
        """
        self.X = X
        self.y = y
        self.ground_truth = ground_truth
        self.original_equation = original_equation

        self.max_evaluations = max_evaluations
        self.max_expression_length = max_expression_length
        self.max_constants = max_constants

        self.success_threshold = success_threshold

        self.symbols = symbols

        # See if symbols contain a symbol for constants
        symbols_metadata = self.symbols.symbols.values()
        self.contains_constants = any([symbol["type"] == "const" for symbol in symbols_metadata])
        if constant_range is None and self.contains_constants:
            constant_range = [-5.0, 5.0]
        self.constant_range = constant_range

        self.dataset_metadata = dataset_metadata

    def __str__(self) -> str:
        """
        Returns a string describing this dataset.

        The string describes the target expression, symbols that should be used,
        and the success threshold. It also includes any constraints that should
        be followed when evaluating a model on this dataset, such as the maximum
        number of expressions to evaluate, the maximum length of the expression,
        and the maximum number of constants allowed in the expression. If the
        symbol library contains a symbol for constants, the string also includes
        the range of constants.

        For other metadata, please refer to the attribute self.dataset_metadata.

        Returns:
            A string describing this dataset.
        """
        description = f"Dataset for target expression {self.original_equation}. "
        description += (f" When evaluating your model on this dataset, you should limit your generative model to only"
                        f" produce expressions using the following symbols: {str(self.symbols)}. Expressions are deemed"
                        f" successful if the root mean squared error is less than {self.success_threshold}. However, we"
                        f" advise that you check the best performing expressions manually to ensure they are correct.")

        has_limitations = False
        limitations = "Constraints for this dataset are:"
        if self.max_evaluations > 0:
            has_limitations = True
            limitations += f" max_evaluations={self.max_evaluations}, "
        if self.max_expression_length > 0:
            has_limitations = True
            limitations += f" max_expression_length={self.max_expression_length}, "
        if self.max_constants > 0:
            has_limitations = True
            limitations += f" max_constants={self.max_constants}, "

        if has_limitations:
            limitations = limitations[:-2] + "."
            description += limitations

        if self.contains_constants:
            description += f" The dataset contains constants. The range of constants is {self.constant_range}."

        description += "For other metadata, please refer to the attribute self.dataset_metadata."

        return description

    def create_evaluator(self, metadata: dict=None) -> SR_evaluator:
        """
        Creates an instance of the SR_evaluator class from this dataset.

        Args:
            metadata: An optional dictionary containing metadata about this evaluation. This could include
                information such as the dataset used, the model used, seed, etc.

        Returns:
            An instance of the SR_evaluator class.
        """
        if metadata is None:
            metadata = dict()
        metadata["dataset_metadata"] = self.dataset_metadata
        return SR_evaluator(self.X, self.y, max_evaluations=self.max_evaluations, metadata=metadata,
                            symbol_library=self.symbols, max_constants=self.max_constants,
                            max_expression_length=self.max_expression_length,)

__init__(X, y, ground_truth, original_equation, symbols, max_evaluations=-1, max_expression_length=-1, max_constants=8, success_threshold=1e-07, constant_range=None, dataset_metadata=None)

Initializes an instance of the SRDataset class.

Parameters:

Name Type Description Default
X ndarray

The input data to be used in parameter estimation for variables. We assume that X is a 2D array with shape (n_samples, n_features).

required
y ndarray

The target values to be used in parameter estimation.

required
ground_truth List[str]

The ground truth expression, represented as a list of tokens (strings) in the infix notation.

required
original_equation str

The original equation from which the ground truth expression was generated).

required
symbols SymbolLibrary

The symbol library to use.

required
max_evaluations int

The maximum number of expressions to evaluate. Less than 0 means no limit.

-1
max_expression_length int

The maximum length of the expression. Less than 0 means no limit.

-1
max_constants int

The maximum number of constants allowed in the expression. Less than 0 means no limit.

8
success_threshold float

The RMSE threshold below which the experiment is considered successful.

1e-07
constant_range List[float]

A list of two floats, specifying the lower and upper bounds for the constant values. Default is [-5.0, 5.0]. If constant_range is None, we automatically set it to [-5.0, 5.0] if the symbol library contains a symbol for constants.

None
dataset_metadata dict

An optional dictionary containing metadata about this evaluation. This could include information such as the name of the dataset, a citation for the dataset, number of variables, etc.

None
Source code in SRToolkit/dataset/srdataset.py
def __init__(self, X: np.ndarray, y: np.ndarray, ground_truth: List[str], original_equation: str,
             symbols: SymbolLibrary, max_evaluations: int=-1, max_expression_length: int=-1, max_constants: int=8,
             success_threshold: float=1e-7, constant_range: List[float]=None, dataset_metadata: dict=None):
    """
    Initializes an instance of the SRDataset class.

    Args:
        X: The input data to be used in parameter estimation for variables. We assume that X is a 2D array
            with shape (n_samples, n_features).
        y: The target values to be used in parameter estimation.
        ground_truth: The ground truth expression, represented as a list of tokens (strings) in the infix notation.
        original_equation: The original equation from which the ground truth expression was generated).
        symbols: The symbol library to use.
        max_evaluations: The maximum number of expressions to evaluate. Less than 0 means no limit.
        max_expression_length: The maximum length of the expression. Less than 0 means no limit.
        max_constants: The maximum number of constants allowed in the expression. Less than 0 means no limit.
        success_threshold: The RMSE threshold below which the experiment is considered successful.
        constant_range: A list of two floats, specifying the lower and upper bounds for the constant values.
            Default is [-5.0, 5.0]. If constant_range is None, we automatically set it to [-5.0, 5.0]
            if the symbol library contains a symbol for constants.
        dataset_metadata: An optional dictionary containing metadata about this evaluation. This could include
            information such as the name of the dataset, a citation for the dataset, number of variables, etc.
    """
    self.X = X
    self.y = y
    self.ground_truth = ground_truth
    self.original_equation = original_equation

    self.max_evaluations = max_evaluations
    self.max_expression_length = max_expression_length
    self.max_constants = max_constants

    self.success_threshold = success_threshold

    self.symbols = symbols

    # See if symbols contain a symbol for constants
    symbols_metadata = self.symbols.symbols.values()
    self.contains_constants = any([symbol["type"] == "const" for symbol in symbols_metadata])
    if constant_range is None and self.contains_constants:
        constant_range = [-5.0, 5.0]
    self.constant_range = constant_range

    self.dataset_metadata = dataset_metadata

__str__()

Returns a string describing this dataset.

The string describes the target expression, symbols that should be used, and the success threshold. It also includes any constraints that should be followed when evaluating a model on this dataset, such as the maximum number of expressions to evaluate, the maximum length of the expression, and the maximum number of constants allowed in the expression. If the symbol library contains a symbol for constants, the string also includes the range of constants.

For other metadata, please refer to the attribute self.dataset_metadata.

Returns:

Type Description
str

A string describing this dataset.

Source code in SRToolkit/dataset/srdataset.py
def __str__(self) -> str:
    """
    Returns a string describing this dataset.

    The string describes the target expression, symbols that should be used,
    and the success threshold. It also includes any constraints that should
    be followed when evaluating a model on this dataset, such as the maximum
    number of expressions to evaluate, the maximum length of the expression,
    and the maximum number of constants allowed in the expression. If the
    symbol library contains a symbol for constants, the string also includes
    the range of constants.

    For other metadata, please refer to the attribute self.dataset_metadata.

    Returns:
        A string describing this dataset.
    """
    description = f"Dataset for target expression {self.original_equation}. "
    description += (f" When evaluating your model on this dataset, you should limit your generative model to only"
                    f" produce expressions using the following symbols: {str(self.symbols)}. Expressions are deemed"
                    f" successful if the root mean squared error is less than {self.success_threshold}. However, we"
                    f" advise that you check the best performing expressions manually to ensure they are correct.")

    has_limitations = False
    limitations = "Constraints for this dataset are:"
    if self.max_evaluations > 0:
        has_limitations = True
        limitations += f" max_evaluations={self.max_evaluations}, "
    if self.max_expression_length > 0:
        has_limitations = True
        limitations += f" max_expression_length={self.max_expression_length}, "
    if self.max_constants > 0:
        has_limitations = True
        limitations += f" max_constants={self.max_constants}, "

    if has_limitations:
        limitations = limitations[:-2] + "."
        description += limitations

    if self.contains_constants:
        description += f" The dataset contains constants. The range of constants is {self.constant_range}."

    description += "For other metadata, please refer to the attribute self.dataset_metadata."

    return description

create_evaluator(metadata=None)

Creates an instance of the SR_evaluator class from this dataset.

Parameters:

Name Type Description Default
metadata dict

An optional dictionary containing metadata about this evaluation. This could include information such as the dataset used, the model used, seed, etc.

None

Returns:

Type Description
SR_evaluator

An instance of the SR_evaluator class.

Source code in SRToolkit/dataset/srdataset.py
def create_evaluator(self, metadata: dict=None) -> SR_evaluator:
    """
    Creates an instance of the SR_evaluator class from this dataset.

    Args:
        metadata: An optional dictionary containing metadata about this evaluation. This could include
            information such as the dataset used, the model used, seed, etc.

    Returns:
        An instance of the SR_evaluator class.
    """
    if metadata is None:
        metadata = dict()
    metadata["dataset_metadata"] = self.dataset_metadata
    return SR_evaluator(self.X, self.y, max_evaluations=self.max_evaluations, metadata=metadata,
                        symbol_library=self.symbols, max_constants=self.max_constants,
                        max_expression_length=self.max_expression_length,)

SRBenchmark

Source code in SRToolkit/dataset/srbenchmark.py
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
class SRBenchmark:
    def __init__(self, benchmark_name: str, base_dir: str, metadata: dict = None):
        """
        Initializes an instance of the SRBenchmark class.

        Args:
            benchmark_name: The name of this benchmark.
            base_dir: The directory where the datasets will be stored.
            metadata: An optional dictionary containing metadata about this benchmark. This could include information such as the name of the benchmark, a citation for the benchmark, number of datasets, etc.
        """
        self.benchmark_name = benchmark_name
        self.base_dir = base_dir
        self.datasets = {}
        self.metadata = {} if metadata is None else metadata

    def add_dataset(self, dataset_name: str, ground_truth: List[str],  symbol_library: SymbolLibrary,
                    original_equation: str = None, max_evaluations: int=-1, max_expression_length: int=-1,
                    max_constants: int=8, success_threshold: float=1e-7, constant_range: List[float]=None,
                    num_variables: int=-1, dataset_metadata: dict=None):

        """
        Adds a dataset to the benchmark.

        Args:
            dataset_name: The name of the dataset.
            ground_truth: The ground truth expression, represented as a list of tokens (strings) in the infix notation.
            symbol_library: The symbol library to use.
            original_equation: The original equation from which the ground truth expression was generated.
            max_evaluations: The maximum number of expressions to evaluate. Less than 0 means no limit.
            max_expression_length: The maximum length of the expression. Less than 0 means no limit.
            max_constants: The maximum number of constants allowed in the expression. Less than 0 means no limit.
            success_threshold: The RMSE threshold below which the experiment is considered successful.
            constant_range: A list of two floats, specifying the lower and upper bounds for the constant values.
                Default is [-5.0, 5.0]. If constant_range is None, we automatically set it to [-5.0, 5.0]
                if the symbol library contains a symbol for constants.
            num_variables: The number of variables in the expression. Default is -1, which means we don't know.
            dataset_metadata: An optional dictionary containing metadata about this dataset. This could include
                information such as the name of the dataset, a citation for the dataset, number of variables, etc.
        """
        if original_equation is None:
            original_equation = "".join(ground_truth)

        self.datasets[dataset_name] = {
            "path": self.base_dir + "/" + dataset_name + ".npy",
            "ground_truth": ground_truth,
            "original_equation": original_equation,
            "symbols": symbol_library,
            "max_evaluations": max_evaluations,
            "max_expression_length": max_expression_length,
            "max_constants": max_constants,
            "success_threshold": success_threshold,
            "constant_range": constant_range,
            "dataset_metadata": self.metadata.update(dataset_metadata),
            "num_variables": num_variables
        }

    def create_dataset(self, dataset_name: str):
        """
        Creates an instance of a dataset from the given dataset name.

        Args:
            dataset_name: The name of the dataset to create.

        Returns:
            A SRDataset instance containing the data, ground truth expression, and metadata for the given dataset.

        Raises:
            ValueError: If the dataset name is not found in the available datasets.
        """
        if dataset_name in self.datasets:
            # Check if dataset exists otherwise download it from an url
            if os.path.exists(self.datasets[dataset_name]["path"]):
                data = np.load(self.datasets[dataset_name]["path"])
            else:
                raise ValueError(f"Could not find dataset {dataset_name} at {self.datasets[dataset_name]['path']}")

            X = data[:, :-1]
            y = data[:, -1]

            return SRDataset(X, y, ground_truth=self.datasets[dataset_name]["ground_truth"],
                             original_equation=self.datasets[dataset_name]["original_equation"],
                             symbols=self.datasets[dataset_name]["symbols"],
                             max_evaluations=self.datasets[dataset_name]["max_evaluations"],
                             max_expression_length=self.datasets[dataset_name]["max_expression_length"],
                             max_constants=self.datasets[dataset_name]["max_constants"],
                             success_threshold=self.datasets[dataset_name]["success_threshold"],
                             constant_range=self.datasets[dataset_name]["constant_range"],
                             dataset_metadata=self.datasets[dataset_name]["dataset_metadata"])
        else:
            raise ValueError(f"Dataset {dataset_name} not found")

    def list_datasets(self, verbose=True, num_variables: int=-1):
        """
        Lists the available datasets.

        Args:
            verbose (bool): If True, also prints out a description of each dataset.
            num_variables (int): If not -1, only show datasets with the given number of variables.

        Returns:
            A list of dataset names.
        """
        datasets = [dataset_name for dataset_name in self.datasets if num_variables < 0 or self.datasets[dataset_name]["num_variables"] == num_variables]
        datasets = sorted(datasets, key= lambda dataset_name: (self.datasets[dataset_name]["num_variables"], dataset_name))

        if verbose:
            # TODO: Make all names be of equal length for nicer output
            for d in datasets:
                if self.datasets[d]["num_variables"] == 1:
                    variable_str = "1 variable"
                elif self.datasets[d]["num_variables"] < 1:
                    variable_str = "Amount of variables unknown"
                else:
                    variable_str = f"{self.datasets[d]['num_variables']} variables"

                print(f"{d}:\t{variable_str}, \tExpression: {self.datasets[d]['original_equation']}")
        return datasets


    @staticmethod
    def download_benchmark_data(url, directory_path):
        # Check if directory_path exist
        """
        Downloads a benchmark dataset from the given url to the given directory path.

        This function will first check if the directory_path exists. If not, it will create it. Then it will check if the directory_path is empty. If it is not empty, it will not download the data. If it is empty, it will download the data from the given url and extract it to the directory_path.

        Args:
            url (str): The url of the benchmark dataset to download.
            directory_path (str): The path of the directory where the dataset should be downloaded.

        Returns:
            None
        """
        if not os.path.exists(directory_path):
            os.makedirs(directory_path)

        # Check if directory_path is empty
        if not os.listdir(directory_path):
            # Download data from the url to the directory_path
            http_response = urlopen(url)
            zipfile = ZipFile(BytesIO(http_response.read()))
            zipfile.extractall(path=directory_path)


    @staticmethod
    def feynman(dataset_directory: str):
        """
        Downloads the Feynman benchmark dataset, sets up symbol libraries, and adds predefined datasets to the benchmark.

        This method downloads the Feynman benchmark dataset from a specified URL, initializes symbol libraries for symbolic regression with varying numbers of variables, and adds multiple predefined datasets to the benchmark with their respective equations and metadata.

        Args:
            dataset_directory (str): The directory path where the benchmark dataset will be downloaded and stored.

        Returns:
            SRBenchmark: An instance of the SRBenchmark class containing the predefined datasets.
        """
        url = "https://raw.githubusercontent.com/smeznar/SymbolicRegressionToolkit/master/data/feynman.zip"
        SRBenchmark.download_benchmark_data(url, dataset_directory)

        sl_1v = SymbolLibrary()
        sl_1v.add_symbol("+", symbol_type="op", precedence=0, np_fn="{} = {} + {}", latex_str=r"{} + {}")
        sl_1v.add_symbol("-", symbol_type="op", precedence=0, np_fn="{} = {} - {}", latex_str=r"{} - {}")
        sl_1v.add_symbol("*", symbol_type="op", precedence=1, np_fn="{} = {} * {}", latex_str=r"{} \cdot {}")
        sl_1v.add_symbol("/", symbol_type="op", precedence=1, np_fn="{} = {} / {}", latex_str=r"\frac{{{}}}{{{}}}")
        sl_1v.add_symbol("u-", symbol_type="fn", precedence=5, np_fn="{} = -{}", latex_str=r"- {}")
        sl_1v.add_symbol("sqrt", symbol_type="fn", precedence=5, np_fn="{} = np.sqrt({})", latex_str=r"\sqrt {{{}}}")
        sl_1v.add_symbol("sin", symbol_type="fn", precedence=5, np_fn="{} = np.sin({})", latex_str=r"\sin {}")
        sl_1v.add_symbol("cos", symbol_type="fn", precedence=5, np_fn="{} = np.cos({})", latex_str=r"\cos {}")
        sl_1v.add_symbol("exp", symbol_type="fn", precedence=5, np_fn="{} = np.exp({})", latex_str=r"e^{{{}}}")
        sl_1v.add_symbol("arcsin", symbol_type="fn", precedence=5, np_fn="{} = np.arcsin({})", latex_str=r"\arcsin {}")
        sl_1v.add_symbol("tanh", symbol_type="fn", precedence=5, np_fn="{} = np.tanh({})", latex_str=r"\tanh {}")
        sl_1v.add_symbol("ln", symbol_type="fn", precedence=5, np_fn="{} = np.log({})", latex_str=r"\ln {}")
        sl_1v.add_symbol("^2", symbol_type="fn", precedence=-1, np_fn="{} = {}**2", latex_str=r"{}^2")
        sl_1v.add_symbol("^3", symbol_type="fn", precedence=-1, np_fn="{} = {}**3", latex_str=r"{}^3")
        sl_1v.add_symbol("pi", symbol_type="lit", precedence=5, np_fn="np.full(X.shape[0], np.pi)", latex_str=r"\pi")
        sl_1v.add_symbol("C", "const", 5, np_fn="np.full(X.shape[0], C[{}])", latex_str=r"C_{{{}}}")
        sl_1v.add_symbol("X_0", "var", 5, "X[:, 0]", r"X_{0}")

        sl_2v = copy.copy(sl_1v)
        sl_2v.add_symbol("X_1", "var", 5, "X[:, 1]", r"X_{1}")

        sl_3v = copy.copy(sl_2v)
        sl_3v.add_symbol("X_2", "var", 5, "X[:, 2]", r"X_{2}")

        sl_4v = copy.copy(sl_3v)
        sl_4v.add_symbol("X_3", "var", 5, "X[:, 3]", r"X_{3}")

        sl_5v = copy.copy(sl_4v)
        sl_5v.add_symbol("X_4", "var", 5, "X[:, 4]", r"X_{4}")

        sl_6v = copy.copy(sl_5v)
        sl_6v.add_symbol("X_5", "var", 5, "X[:, 5]", r"X_{5}")

        sl_8v = copy.copy(sl_6v)
        sl_8v.add_symbol("X_6", "var", 5, "X[:, 6]", r"X_{6}")
        sl_8v.add_symbol("X_7", "var", 5, "X[:, 7]", r"X_{7}")

        sl_9v = copy.copy(sl_8v)
        sl_9v.add_symbol("X_8", "var", 5, "X[:, 8]", r"X_{8}")

        benchmark = SRBenchmark("feynman", dataset_directory)
        benchmark.add_dataset("I.16.6", ["(", "X_2", "+", "X_1", ")", "/", "(", "1", "+", "(", "X_2", "*", "X_1", ")", "/", "(", "X_0", "^2", ")", ")"],
                              sl_3v, original_equation="v1 = (u+v)/(1+u*v/c^2)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.15.4", ["u-", "X_0", "*", "X_1", "*", "cos", "(", "X_2", ")"], sl_3v, original_equation="E_n = -mom*B*cos(theta)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.27.16", ["X_0", "*", "X_1", "*", "X_2", "^2"], sl_3v, original_equation="flux = epsilon*c*Ef^2", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.11.19", ["X_0", "*", "X_3", "+", "X_1", "*", "X_4", "+", "X_2", "*", "X_5"], sl_6v, original_equation="A = x1*y1+x2*y2+x3*y3", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=6,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.15.3x", ["(", "X_0", "-", "X_1", "*", "X_3", ")", "/", "sqrt", "(", "1", "-", "X_1", "^2", "/", "X_2", "^2", ")"], sl_4v, original_equation="x1 = (x-u*t)/sqrt(1-u^2/c^2)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=4,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.10.7", ["X_0", "/", "sqrt", "(", "1", "-", "X_1", "^2", "/", "X_2", "^2", ")"], sl_3v, original_equation="m = m_0/sqrt(1-v^2/c^2)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.9.18", ["X_2", "*", "X_0", "*", "X_1", "/", "(", "(", "X_4", "-", "X_3", ")", "^2", "+", "(", "X_6", "-", "X_5", ")", "^2", "+", "(", "X_8", "-", "X_7", ")", "^2",")"], sl_9v, original_equation="F = G*m1*m2/((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=9,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.15.3t", ["(", "X_3", "-", "X_2", "*", "X_0", "/", "X_1", "^2", ")", "/", "sqrt", "(", "1", "-", "X_2", "^2", "/", "X_1", "^2", ")"], sl_4v, original_equation="t1 = (t-u*x/c^2)/sqrt(1-u^2/c^2)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=4,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.36.38", ["(", "X_0", "*", "X_1", ")", "/", "(", "X_2", "*", "X_3",")", "+", "(", "(", "X_0", "*", "X_4", ")", "/", "(", "X_5", "*", "X_6", "^2", "*", "X_2", "*", "X_3", ")", ")", "*", "X_7"], sl_8v, original_equation="f = mom*H/(kb*T)+(mom*alpha)/(epsilon*c**2*kb*T)*M", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=8,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.43.43", ["(", "1", "/", "(", "X_0", "-", "1", ")", ")", "*", "X_1", "*", "X_3", "/", "X_2"], sl_4v, original_equation="kappa = 1/(gamma-1)*kb*v/A", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=4,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.15.5", ["u-", "X_0", "*", "X_1", "*", "cos", "(", "X_2", ")"], sl_3v, original_equation="E_n = -p_d*Ef*cos(theta)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.37.4", ["X_0", "+", "X_1", "+", "2", "*", "sqrt", "(", "X_0", "*", "X_1", ")", "*", "cos", "(", "X_2", ")"], sl_3v, original_equation="Int = I1+I2+2*sqrt(I1*I2)*cos(delta)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.6.11", ["(", "1", "/", "(", "4", "*", "pi", "*", "X_0", ")", ")", "*", "X_1", "*", "cos", "(", "X_2", ")", "/", "X_3", "^2"], sl_4v, original_equation="Volt = 1/(4*pi*epsilon)*p_d*cos(theta)/r^2", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=4,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("III.7.38", ["2", "*", "X_0", "*", "X_1", "/", "(", "X_2", "/", "(", "2", "*", "pi", ")", ")"], sl_3v, original_equation="omega = 2*mom*B/(h/(2*pi))", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.34.2a", ["X_0", "*", "X_1", "/", "(", "2", "*", "pi", "*", "X_2", ")"], sl_3v, original_equation="l = q*v/(2*pi*r)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.13.23", ["X_0", "/", "sqrt", "(", "1", "-", "X_1", "^2", "/", "X_2", "^2", ")"], sl_3v, original_equation="rho_c = rho_c_0/sqrt(1-v^2/c^2)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.29.4", ["X_0", "/", "X_1"], sl_2v, original_equation="k = omega/c", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=2,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.38.12", ["4", "*", "pi", "*", "X_3", "*", "(", "X_2", "/", "(", "2", "*", "pi", ")", ")", "^2", "/", "(", "X_0", "*", "X_1", "^2", ")"], sl_4v, original_equation="r = 4*pi*epsilon*(h/(2*pi))^2/(m*q^2)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=4,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("III.15.27", ["2", "*", "pi", "*", "X_0", "/", "(", "X_1", "*", "X_2", ")"], sl_3v, original_equation="k = 2*pi*alpha/(n*d)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.41.16", ["(", "X_2", "/", "(", "2", "*", "pi", ")", ")", "*", "X_0", "^3", "/", "(", "pi", "^2", "*", "X_4", "^2", "*", "(", "exp", "(", "(", "X_2", "/", "(", "2", "*", "pi", ")", ")", "*", "X_0", "/", "(", "X_3", "*", "X_1", ")", ")", "-", "1", ")", ")"], sl_5v, original_equation="L_rad = h/(2*pi)*omega^3/(pi^2*c^2*(exp((h/(2*pi))*omega/(kb*T))-1))", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=5,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.48.20", ["X_0", "*", "X_2", "^2", "/", "sqrt", "(", "1", "-", "X_1", "^2", "/", "X_2", "^2", ")"], sl_3v, original_equation="E_n = m*c^2/sqrt(1-v^2/c^2)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.11.20", ["X_0", "*", "X_1", "^2", "*", "X_2", "/", "(", "3", "*", "X_3", "*", "X_4", ")"], sl_5v, original_equation="Pol = n_rho*p_d^2*Ef/(3*kb*T)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=5,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.25.13", ["X_0", "/", "X_1"], sl_2v, original_equation="Volt = q/C", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=2,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("III.15.12", ["2", "*", "X_0", "*", "(", "1", "-", "cos", "(", "X_1", "*", "X_2", ")", ")"], sl_3v, original_equation="E_n = 2*U*(1-cos(k*d))", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.24.6", ["0.25", "*", "X_0", "*", "(", "X_1", "^2", "+", "X_2", "^2", ")", "*", "X_3", "^2"], sl_4v, original_equation="E_n = 1/2*m*(omega^2+omega_0^2)*1/2*x^2", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=4,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.34.27", ["(", "X_1", "/", "(", "2", "*", "pi", ")", ")", "*", "X_0"], sl_2v, original_equation="E_n =(h/(2*pi))*omega", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=2,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.43.31", ["X_0", "*", "X_2", "*", "X_1"], sl_3v, original_equation="D = mob*kb*T", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.29.16", ["sqrt", "(", "X_0", "^2", "+", "X_1", "^2", "-", "2", "*", "X_0", "*", "X_1", "*", "cos", "(", "X_2", "-", "X_3", ")", ")"], sl_4v, original_equation="x = sqrt(x1^2+x2^2-2*x1*x2*cos(theta1-theta2))", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=4,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.18.4", ["(","X_0", "*", "X_2", "+", "X_1", "*", "X_3", ")", "/", "(", "X_0", "+", "X_1", ")"], sl_4v, original_equation="r = (m1*r1+m2*r2)/(m1+m2)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=4,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.6.15a", ["(", "X_1", "/", "(", "4", "*", "pi", "*", "X_0", ")", ")", "*", "(", "3", "*", "X_5", "/", "(", "X_2", "^2", "*", "X_2", "^3", ")", ")", "*", "sqrt", "(", "X_3", "^2", "+", "X_4", "^2", ")"],
                              sl_6v, original_equation="Ef = p_d/(4*pi*epsilon)*3*z/r^5*sqrt(x^2+y^2)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=6,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.30.3", ["X_0", "*", "sin", "(", "X_2", "*", "X_1", "/", "2", ")", "^2", "/", "sin", "(", "X_1", "/", "2", ")", "^2"], sl_3v, original_equation="Int = Int_0*sin(n*theta/2)^2/sin(theta/2)^2", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("III.9.52", ["(", "X_0", "*", "X_1", "*", "X_2", "/", "(", "X_3", "/", "(", "2", "*", "pi", ")", ")", ")", "*", "sin", "(", "(", "X_4", "-", "X_5", ")", "*", "X_2", "/", "2", ")", "^2", "/", "(", "(", "X_4", "-", "X_5", ")", "*", "X_2", "/", "2", ")","^2"], sl_6v, original_equation="prob = (p_d*Ef*t/(h/(2*pi)))*sin((omega-omega_0)*t/2)^2/((omega-omega_0)*t/2)^2", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=6,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.34.2", ["X_0", "*", "X_1", "*", "X_2", "/", "2"], sl_3v, original_equation="mom = q*v*r/2", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.39.11", ["(", "1", "/", "(", "X_0", "-", "1", ")", ")", "*", "X_1", "*", "X_2"], sl_3v, original_equation="E_n = (1/(gamma-1))*pr*V", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.11.28", ["1", "+", "X_0", "*", "X_1", "/", "(", "1", "-", "(", "X_0", "*", "X_1", "/", "3", ")", ")"], sl_2v, original_equation="theta = 1+n*alpha/(1-(n*alpha/3))", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=2,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.3.24", ["X_0", "/", "(", "4", "*", "pi", "*", "X_1", "^2", ")"], sl_2v, original_equation="flux = Pwr/(4*pi*r^2)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=2,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.24.17", ["sqrt", "(", "X_0", "^2", "/", "X_1", "^2", "-", "pi", "^2", "/", "X_2", "^2", ")"], sl_3v, original_equation="k = sqrt(omega^2/c^2-pi^2/d^2)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.13.17", ["(", "1", "/", "(", "4", "*", "pi", "*", "X_0", "*", "X_1", "^2", ")", ")", "*", "2", "*", "X_2", "/", "X_3"],
                              sl_4v, original_equation="B = 1/(4*pi*epsilon*c^2)*2*I/r", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=4,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.12.5", ["X_0", "*", "X_1"], sl_2v, original_equation="F = q2*Ef", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=2,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        # Check again if you find the time
        benchmark.add_dataset("II.35.18",
                              ["X_0", "/", "(", "exp", "(", "X_3", "*", "X_4", "/", "(", "X_1", "*", "X_2", ")", ")",
                               "+", "exp", "(", "u-", "X_3", "*", "X_4", "/", "(", "X_1", "*", "X_2", ")", ")", ")"],
                              sl_5v, original_equation="n_0/(exp(mom*B/(kb*T))+exp(-mom*B/(kb*T)))",
                              max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=5,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.34.11", ["X_0", "*", "X_1", "*", "X_2", "/", "(", "2", "*", "X_3", ")"], sl_4v,
                              original_equation="g_*q*B/(2*m)", max_evaluations=100000, max_expression_length=50,
                              success_threshold=1e-7, num_variables=4, dataset_metadata=benchmark.metadata,
                              constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.34.29a", ["X_0", "*", "X_1", "/", "(", "4", "*", "pi", "*", "X_2", ")"], sl_3v,
                              original_equation="q*h/(4*pi*m)", max_evaluations=100000, max_expression_length=50,
                              success_threshold=1e-7, num_variables=3, dataset_metadata=benchmark.metadata,
                              constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.32.17",
                              ["(", "0.5", "*", "X_0", "*", "X_1", "*", "X_2", "^2", ")", "*", "(", "8", "*",
                               "pi", "*", "X_3", "^2", "/", "3", ")", "*", "(", "(","X_4", "^2", "*", "X_4", "^2",")", "/", "(", "X_4", "^2",
                               "-", "X_5", "^2", ")", "^2", ")"], sl_6v,
                              original_equation="(1/2*epsilon*c*Ef**2)*(8*pi*r**2/3)*(omega**4/(omega**2-omega_0**2)**2)",
                              max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=6,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.35.21",
                              ["X_0", "*", "X_1", "*", "tanh", "(", "X_1", "*", "X_2", "/", "(", "X_3", "*", "X_4", ")",
                               ")"], sl_5v, original_equation="n_rho*mom*tanh(mom*B/(kb*T))", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=5,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.44.4", ["X_0", "*", "X_1", "*", "X_2", "*", "ln", "(", "X_4", "/", "X_3", ")"], sl_5v,
                              original_equation="n*kb*T*ln(V2/V1)", max_evaluations=100000, max_expression_length=50,
                              success_threshold=1e-7, num_variables=5, dataset_metadata=benchmark.metadata,
                              constant_range=[-5.0, 5.0])
        benchmark.add_dataset("III.4.32",
                              ["1", "/", "(", "exp", "(", "(", "X_0", "/", "(", "2", "*", "pi", ")", ")", "*", "X_1",
                               "/", "(", "X_2", "*", "X_3", ")", ")", "-", "1", ")"], sl_4v,
                              original_equation="1/(exp((h/(2*pi))*omega/(kb*T))-1)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=4,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.10.9", ["(", "X_0", "/", "X_1", ")", "*", "1", "/", "(", "1", "+", "X_2", ")"], sl_3v,
                              original_equation="sigma_den/epsilon*1/(1+chi)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.38.3", ["X_0", "*", "X_1", "*", "X_3", "/", "X_2"], sl_4v,
                              original_equation="Y*A*x/d", max_evaluations=100000, max_expression_length=50,
                              success_threshold=1e-7, num_variables=4, dataset_metadata=benchmark.metadata,
                              constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.6.2b",
                              ["exp", "(", "u-", "(", "(", "(", "X_1", "-", "X_2", ")", "/", "X_0", ")", "^2", ")", "/", "2", ")",
                               "/", "(", "sqrt", "(", "2", "*", "pi", ")", "*", "X_0", ")"], sl_3v,
                              original_equation="exp(-((theta-theta1)/sigma)**2/2)/(sqrt(2*pi)*sigma)",
                              max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.8.31", ["X_0", "*", "X_1", "^2", "/", "2"], sl_2v,
                              original_equation="epsilon*Ef**2/2", max_evaluations=100000, max_expression_length=50,
                              success_threshold=1e-7, num_variables=2, dataset_metadata=benchmark.metadata,
                              constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.6.2a",
                              ["exp", "(", "u-", "X_0", "^2", "/", "2", ")", "/", "sqrt", "(", "2", "*", "pi", ")"],
                              sl_1v, original_equation="exp(-theta**2/2)/sqrt(2*pi)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=1,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("III.12.43", ["X_0", "*", "(", "X_1", "/", "(", "2", "*", "pi", ")", ")"], sl_2v,
                              original_equation="n*(h/(2*pi))", max_evaluations=100000, max_expression_length=50,
                              success_threshold=1e-7, num_variables=2, dataset_metadata=benchmark.metadata,
                              constant_range=[-5.0, 5.0])
        benchmark.add_dataset("III.17.37", ["X_0", "*", "(", "1", "+", "X_1", "*", "cos", "(", "X_2", ")", ")"], sl_3v,
                              original_equation="beta*(1+alpha*cos(theta))", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("III.10.19",
                              ["X_0", "*", "sqrt", "(", "X_1", "^2", "+", "X_2", "^2", "+", "X_3", "^2", ")"], sl_4v,
                              original_equation="mom*sqrt(Bx**2+By**2+Bz**2)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=4,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.11.7",
                              ["X_0", "*", "(", "1", "+", "X_4", "*", "X_5", "*", "cos", "(", "X_3", ")", "/", "(",
                               "X_1", "*", "X_2", ")", ")"], sl_6v,
                              original_equation="n_0*(1+p_d*Ef*cos(theta)/(kb*T))", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=6,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.39.1", ["1.5", "*", "X_0", "*", "X_1"], sl_2v, original_equation="3/2*pr*V",
                              max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=2,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.37.1", ["X_0", "*", "(", "1", "+", "X_2", ")", "*", "X_1"], sl_3v,
                              original_equation="mom*(1+chi)*B", max_evaluations=100000, max_expression_length=50,
                              success_threshold=1e-7, num_variables=3, dataset_metadata=benchmark.metadata,
                              constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.12.4",
                              ["X_0", "*", "X_2", "/", "(", "4", "*", "pi", "*", "X_1", "*", "X_2", "^3", ")"],
                              sl_3v, original_equation="q1*r/(4*pi*epsilon*r**3)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.27.18", ["X_0", "*", "X_1", "^2"], sl_2v, original_equation="epsilon*Ef**2",
                              max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=2,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.12.2",
                              ["X_0", "*", "X_1", "*", "X_3", "/", "(", "4", "*", "pi", "*", "X_2", "*", "X_3", "^3", ")"],
                              sl_4v, original_equation="q1*q2*r/(4*pi*epsilon*r**3)",
                              max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=4,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("III.13.18",
                              ["2", "*", "X_0", "*", "X_1", "^2", "*", "X_2", "/", "(", "X_3", "/", "(", "2", "*", "pi",
                               ")", ")"], sl_4v, original_equation="2*E_n*d**2*k/(h/(2*pi))", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=4,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.11.3",
                              ["X_0", "*", "X_1", "/", "(", "X_2", "*", "(", "X_3", "^2", "-", "X_4", "^2", ")", ")"],
                              sl_5v, original_equation="q*Ef/(m*(omega_0**2-omega**2))", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=5,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.40.1",
                              ["X_0", "*", "exp", "(", "u-", "X_1", "*", "X_4", "*", "X_2", "/", "(", "X_5", "*", "X_3",
                               ")", ")"], sl_6v, original_equation="n_0*exp(-m*g*x/(kb*T))", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=6,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("III.21.20", ["u-", "X_0", "*", "X_1", "*", "X_2", "/", "X_3"], sl_4v,
                              original_equation="-rho_c_0*q*A_vec/m", max_evaluations=100000, max_expression_length=50,
                              success_threshold=1e-7, num_variables=4, dataset_metadata=benchmark.metadata,
                              constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.43.16", ["X_0", "*", "X_1", "*", "X_2", "/", "X_3"], sl_4v,
                              original_equation="mu_drift*q*Volt/d", max_evaluations=100000, max_expression_length=50,
                              success_threshold=1e-7, num_variables=4, dataset_metadata=benchmark.metadata,
                              constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.15.10",
                              ["X_0", "*", "X_1", "/", "sqrt", "(", "1", "-", "X_1", "^2", "/", "X_2", "^2", ")"],
                              sl_3v, original_equation="m_0*v/sqrt(1-v**2/c**2)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.30.5", ["arcsin", "(", "X_0", "/", "(", "X_2", "*", "X_1", ")", ")"], sl_3v,
                              original_equation="arcsin(lambd/(n*d))", max_evaluations=100000, max_expression_length=50,
                              success_threshold=1e-7, num_variables=3, dataset_metadata=benchmark.metadata,
                              constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.50.26",
                              ["X_0", "*", "(", "cos", "(", "X_1", "*", "X_2", ")", "+", "X_3", "*", "cos", "(", "X_1",
                               "*", "X_2", ")", "^2", ")"], sl_4v,
                              original_equation="x1*(cos(omega*t)+alpha*cos(omega*t)**2)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=4,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.12.11",
                              ["X_0", "*", "(", "X_1", "+", "X_2", "*", "X_3", "*", "sin", "(", "X_4", ")", ")"], sl_5v,
                              original_equation="q*(Ef+B*v*sin(theta))", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=5,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.6.2",
                              ["exp", "(", "u-", "(", "(", "X_1", "/", "X_0", ")", "^2", ")",  "/", "2", ")", "/", "(", "sqrt",
                               "(", "2", "*", "pi", ")", "*", "X_0", ")"], sl_2v,
                              original_equation="exp(-(theta/sigma)**2/2)/(sqrt(2*pi)*sigma)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=2,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.14.4", ["0.5", "*", "X_0", "*", "X_1", "^2"], sl_2v,
                              original_equation="1/2*k_spring*x**2", max_evaluations=100000, max_expression_length=50,
                              success_threshold=1e-7, num_variables=2, dataset_metadata=benchmark.metadata,
                              constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.47.23", ["sqrt", "(", "X_0", "*", "X_1", "/", "X_2", ")"], sl_3v,
                              original_equation="sqrt(gamma*pr/rho)", max_evaluations=100000, max_expression_length=50,
                              success_threshold=1e-7, num_variables=3, dataset_metadata=benchmark.metadata,
                              constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.8.7",
                              ["0.6", "*", "X_0", "^2", "/", "(", "4", "*", "pi", "*", "X_1", "*", "X_2", ")"],
                              sl_3v, original_equation="3/5*q**2/(4*pi*epsilon*d)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("III.15.14",
                              ["(", "X_0", "/", "(", "2", "*", "pi", ")", ")", "^2", "/", "(", "2", "*", "X_1", "*",
                               "X_2", "^2", ")"], sl_3v, original_equation="(h/(2*pi))**2/(2*E_n*d**2)",
                              max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.34.14",
                              ["(", "(", "1", "+", "(", "X_1", "/", "X_0", ")", ")", "/", "sqrt", "(", "1", "-", "X_1", "^2", "/",
                               "X_0", "^2", ")", ")", "*", "X_2"], sl_3v,
                              original_equation="((1+v/c)/sqrt(1-v**2/c**2))*omega_0", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("III.8.54",
                              ["sin", "(", "X_0", "*", "X_1", "/", "(", "X_2", "/", "(", "2", "*", "pi", ")", ")", ")",
                               "^2"], sl_3v, original_equation="sin(E_n*t/(h/(2*pi)))**2", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.26.2", ["arcsin", "(", "X_0", "*", "sin", "(", "X_1", ")", ")"], sl_2v,
                              original_equation="arcsin(n*sin(theta2))", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=2,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("III.19.51",
                              ['(', "u-", "X_0", "*", "(", "X_1", "^2", "*", "X_1", "^2", ")", "/", "(", "2", "*", "(", "4", "*", "pi", "*", "X_4",
                               ")", "^2", ")", "*", "(", "X_2", "/", "(", "2", "*", "pi", ")", ")", "^2", ")", "*", "(", "1",
                               "/", "X_3", "^2", ")"], sl_5v,
                              original_equation="-m*q**4/(2*(4*pi*epsilon)**2*(h/(2*pi))**2)*(1/n**2)",
                              max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=5,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("III.4.33",
                              ["(", "X_0", "/", "(", "2", "*", "pi", ")", ")", "*", "X_1", "/", "(", "exp", "(", "(",
                               "X_0", "/", "(", "2", "*", "pi", ")", ")", "*", "X_1", "/", "(", "X_2", "*", "X_3", ")",
                               ")", "-", "1", ")"], sl_4v,
                              original_equation="(h/(2*pi))*omega/(exp((h/(2*pi))*omega/(kb*T))-1)",
                              max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=4,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.34.1", ["X_2", "/", "(", "1", "-", "X_1", "/", "X_0", ")"], sl_3v,
                              original_equation="omega_0/(1-v/c)", max_evaluations=100000, max_expression_length=50,
                              success_threshold=1e-7, num_variables=3, dataset_metadata=benchmark.metadata,
                              constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.11.27",
                              ["(", "X_0", "*", "X_1", "/", "(", "1", "-", "(", "X_0", "*", "X_1", "/", "3", ")", ")", ")", "*",
                               "X_2", "*", "X_3"], sl_4v, original_equation="n*alpha/(1-(n*alpha/3))*epsilon*Ef",
                              max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=4,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.13.34",
                              ["X_0", "*", "X_1", "/", "sqrt", "(", "1", "-", "X_1", "^2", "/", "X_2", "^2", ")"],
                              sl_3v, original_equation="rho_c_0*v/sqrt(1-v**2/c**2)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.4.23", ["X_0", "/", "(", "4", "*", "pi", "*", "X_1", "*", "X_2", ")"], sl_3v,
                              original_equation="q/(4*pi*epsilon*r)", max_evaluations=100000, max_expression_length=50,
                              success_threshold=1e-7, num_variables=3, dataset_metadata=benchmark.metadata,
                              constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.32.5",
                              ["X_0", "^2", "*", "X_1", "^2", "/", "(", "6", "*", "pi", "*", "X_2", "*", "X_3", "^3", ")"],
                              sl_4v, original_equation="q**2*a**2/(6*pi*epsilon*c**3)",
                              max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=4,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.13.12",
                              ["X_4", "*", "X_0", "*", "X_1", "*", "(", "1", "/", "X_3", "-", "1", "/", "X_2", ")"],
                              sl_5v, original_equation="G*m1*m2*(1/r2-1/r1)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=5,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.2.42", ["X_0", "*", "(", "X_2", "-", "X_1", ")", "*", "X_3", "/", "X_4"], sl_5v,
                              original_equation="kappa*(T2-T1)*A/d", max_evaluations=100000, max_expression_length=50,
                              success_threshold=1e-7, num_variables=5, dataset_metadata=benchmark.metadata,
                              constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.27.6", ["1", "/", "(", "1", "/", "X_0", "+", "X_2", "/", "X_1", ")"], sl_3v,
                              original_equation="1/(1/d1+n/d2)", max_evaluations=100000, max_expression_length=50,
                              success_threshold=1e-7, num_variables=3, dataset_metadata=benchmark.metadata,
                              constant_range=[-5.0, 5.0])
        benchmark.add_dataset("III.14.14",
                              ["X_0", "*", "(", "exp", "(", "X_1", "*", "X_2", "/", "(", "X_3", "*", "X_4", ")", ")",
                               "-", "1", ")"], sl_5v, original_equation="I_0*(exp(q*Volt/(kb*T))-1)",
                              max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=5,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.18.12", ["X_0", "*", "X_1", "*", "sin", "(", "X_2", ")"], sl_3v,
                              original_equation="r*F*sin(theta)", max_evaluations=100000, max_expression_length=50,
                              success_threshold=1e-7, num_variables=3, dataset_metadata=benchmark.metadata,
                              constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.18.14", ["X_0", "*", "X_1", "*", "X_2", "*", "sin", "(", "X_3", ")"], sl_4v,
                              original_equation="m*r*v*sin(theta)", max_evaluations=100000, max_expression_length=50,
                              success_threshold=1e-7, num_variables=4, dataset_metadata=benchmark.metadata,
                              constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.21.32",
                              ["X_0", "/", "(", "4", "*", "pi", "*", "X_1", "*", "X_2", "*", "(", "1", "-", "X_3", "/",
                               "X_4", ")", ")"], sl_5v, original_equation="q/(4*pi*epsilon*r*(1-v/c))",
                              max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=5,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.38.14", ["X_0", "/", "(", "2", "*", "(", "1", "+", "X_1", ")", ")"], sl_2v,
                              original_equation="Y/(2*(1+sigma))", max_evaluations=100000, max_expression_length=50,
                              success_threshold=1e-7, num_variables=2, dataset_metadata=benchmark.metadata,
                              constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.34.8", ["X_0", "*", "X_1", "*", "X_2", "/", "X_3"], sl_4v, original_equation="q*v*B/p",
                              max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=4,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.8.14",
                              ["sqrt", "(", "(", "X_1", "-", "X_0", ")", "^2", "+", "(", "X_3", "-", "X_2", ")", "^2",
                               ")"], sl_4v, original_equation="sqrt((x2-x1)**2+(y2-y1)**2)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=4,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.6.15b",
                              ["(", "X_1", "/", "(", "4", "*", "pi", "*", "X_0", ")", ")", "*", "3", "*", "cos", "(", "X_2", ")",
                               "*", "sin", "(", "X_2", ")", "/", "X_3", "^3"], sl_4v,
                              original_equation="p_d/(4*pi*epsilon)*3*cos(theta)*sin(theta)/r**3",
                              max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=4,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.12.1", ["X_0", "*", "X_1"], sl_2v, original_equation="mu*Nn", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=2,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("II.34.29b",
                              ["X_0", "*", "X_3", "*", "X_4", "*", "X_2", "/", "(", "X_1", "/", "(", "2", "*", "pi",
                               ")", ")"], sl_5v, original_equation="g_*mom*B*Jz/(h/(2*pi))", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=5,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.13.4",
                              ["0.5", "*", "X_0", "*", "(", "X_1", "^2", "+", "X_2", "^2", "+", "X_3", "^2",
                               ")"], sl_4v, original_equation="1/2*m*(v**2+u**2+w**2)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=4,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.39.22", ["X_0", "*", "X_3", "*", "X_1", "/", "X_2"], sl_4v,
                              original_equation="n*kb*T/V", max_evaluations=100000, max_expression_length=50,
                              success_threshold=1e-7, num_variables=4, dataset_metadata=benchmark.metadata,
                              constant_range=[-5.0, 5.0])
        benchmark.add_dataset("I.14.3", ["X_0", "*", "X_1", "*", "X_2"], sl_3v, original_equation="m*g*z",
                              max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=3,
                              dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])

        return benchmark

    @staticmethod
    def nguyen(dataset_directory: str):
        """
        Downloads and initializes the Nguyen benchmark datasets for symbolic regression.

        This method downloads the Nguyen symbolic regression benchmark datasets from a specified URL
        and initializes a set of datasets using a provided dataset directory. It creates two symbol libraries
        for equations with one variable and two variables, respectively, and populates the benchmark with various
        Nguyen equations, each represented with its symbolic tokens and associated symbol library.

        Args:
            dataset_directory (str): The directory where the benchmark datasets will be stored and accessed.

        Returns:
            SRBenchmark: An initialized SRBenchmark instance containing the Nguyen datasets.
        """
        url = "https://raw.githubusercontent.com/smeznar/SymbolicRegressionToolkit/master/data/nguyen.zip"
        SRBenchmark.download_benchmark_data(url, dataset_directory)
        # we create a SymbolLibrary with 1 and with 2 variables
        # Each library contains +, -, *, /, sin, cos, exp, log, sqrt, ^2, ^3
        sl_1v = SymbolLibrary()
        sl_1v.add_symbol("+", symbol_type="op", precedence=0, np_fn="{} = {} + {}")
        sl_1v.add_symbol("-", symbol_type="op", precedence=0, np_fn="{} = {} - {}")
        sl_1v.add_symbol("*", symbol_type="op", precedence=1, np_fn="{} = {} * {}")
        sl_1v.add_symbol("/", symbol_type="op", precedence=1, np_fn="{} = {} / {}")
        sl_1v.add_symbol("sin", symbol_type="fn", precedence=5, np_fn="{} = np.sin({})")
        sl_1v.add_symbol("cos", symbol_type="fn", precedence=5, np_fn="{} = np.cos({})")
        sl_1v.add_symbol("exp", symbol_type="fn", precedence=5, np_fn="{} = np.exp({})")
        sl_1v.add_symbol("log", symbol_type="fn", precedence=5, np_fn="{} = np.log10({})")
        sl_1v.add_symbol("sqrt", symbol_type="fn", precedence=5, np_fn="{} = np.sqrt({})")
        sl_1v.add_symbol("^2", symbol_type="fn", precedence=5, np_fn="{} = np.power({}, 2)")
        sl_1v.add_symbol("^3", symbol_type="fn", precedence=5, np_fn="{} = np.power({}, 3)")
        sl_1v.add_symbol("X_0", "var", 5, "X[:, 0]")

        sl_2v = copy.copy(sl_1v)
        sl_2v.add_symbol("X_1", "var", 5, "X[:, 1]")

        # Add datasets to the benchmark
        benchmark = SRBenchmark("Nguyen", dataset_directory)
        benchmark.add_dataset("NG-1", ["X_0", "+", "X_0", "^2", "+", "X_0", "^3"], sl_1v,
                              original_equation="x+x^2+x^3", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=1,
                              dataset_metadata=benchmark.metadata)
        benchmark.add_dataset("NG-2", ["X_0", "+", "X_0", "^2", "+", "X_0", "^3", "+", "X_0","*", "X_0", "^3"], sl_1v,
                              original_equation="x+x^2+x^3+x^4", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=1,
                              dataset_metadata=benchmark.metadata)
        benchmark.add_dataset("NG-3", ["X_0", "+", "X_0", "^2", "+", "X_0", "^3", "+", "X_0","*", "X_0", "^3", "+", "X_0","^2", "*", "X_0", "^3"], sl_1v,
                              original_equation="x+x^2+x^3+x^4+x^5", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=1,
                              dataset_metadata=benchmark.metadata)
        benchmark.add_dataset("NG-4", ["X_0", "+", "X_0", "^2", "+", "X_0", "^3", "+", "X_0","*", "X_0", "^3", "+", "X_0","^2", "*", "X_0", "^3", "+", "X_0","^3", "*", "X_0", "^3"], sl_1v,
                              original_equation="x+x^2+x^3+x^4+x^5+x^6", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=1,
                              dataset_metadata=benchmark.metadata)
        benchmark.add_dataset("NG-5", ["sin", "(", "X_0", "^2", ")", "*", "cos", "(", "X_0", ")", "-", "1"], sl_1v,
                              original_equation="sin(x^2)*cos(x)-1", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=1,
                              dataset_metadata=benchmark.metadata)
        benchmark.add_dataset("NG-6", ["sin", "(", "X_0", ")", "+", "sin", "(", "X_0", "+", "X_0", "^2", ")"], sl_1v,
                              original_equation="sin(x)+sin(x+x^2)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=1,
                              dataset_metadata=benchmark.metadata)
        benchmark.add_dataset("NG-7", ["log", "(", "1", "+", "X_0", ")", "+", "log", "(", "1", "+", "X_0", "^2", ")"], sl_1v,
                              original_equation="log(1+x)+log(1+x^2)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=1,
                              dataset_metadata=benchmark.metadata)
        benchmark.add_dataset("NG-8", ["sqrt", "(", "X_0", ")"], sl_1v,
                              original_equation="sqrt(x)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=1,
                              dataset_metadata=benchmark.metadata)
        benchmark.add_dataset("NG-9", ["sin", "(", "X_0", ")", "+", "sin", "(", "X_1", "^2", ")"], sl_2v,
                              original_equation="sin(x)+sin(y^2)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=2,
                              dataset_metadata=benchmark.metadata)
        benchmark.add_dataset("NG-10", ["2", "*", "sin", "(", "X_0", ")", "*", "cos", "(", "X_1", ")"], sl_2v,
                              original_equation="2*sin(x)*cos(y)", max_evaluations=100000,
                              max_expression_length=50, success_threshold=1e-7, num_variables=2,
                              dataset_metadata=benchmark.metadata)

        return benchmark

__init__(benchmark_name, base_dir, metadata=None)

Initializes an instance of the SRBenchmark class.

Parameters:

Name Type Description Default
benchmark_name str

The name of this benchmark.

required
base_dir str

The directory where the datasets will be stored.

required
metadata dict

An optional dictionary containing metadata about this benchmark. This could include information such as the name of the benchmark, a citation for the benchmark, number of datasets, etc.

None
Source code in SRToolkit/dataset/srbenchmark.py
def __init__(self, benchmark_name: str, base_dir: str, metadata: dict = None):
    """
    Initializes an instance of the SRBenchmark class.

    Args:
        benchmark_name: The name of this benchmark.
        base_dir: The directory where the datasets will be stored.
        metadata: An optional dictionary containing metadata about this benchmark. This could include information such as the name of the benchmark, a citation for the benchmark, number of datasets, etc.
    """
    self.benchmark_name = benchmark_name
    self.base_dir = base_dir
    self.datasets = {}
    self.metadata = {} if metadata is None else metadata

add_dataset(dataset_name, ground_truth, symbol_library, original_equation=None, max_evaluations=-1, max_expression_length=-1, max_constants=8, success_threshold=1e-07, constant_range=None, num_variables=-1, dataset_metadata=None)

Adds a dataset to the benchmark.

Parameters:

Name Type Description Default
dataset_name str

The name of the dataset.

required
ground_truth List[str]

The ground truth expression, represented as a list of tokens (strings) in the infix notation.

required
symbol_library SymbolLibrary

The symbol library to use.

required
original_equation str

The original equation from which the ground truth expression was generated.

None
max_evaluations int

The maximum number of expressions to evaluate. Less than 0 means no limit.

-1
max_expression_length int

The maximum length of the expression. Less than 0 means no limit.

-1
max_constants int

The maximum number of constants allowed in the expression. Less than 0 means no limit.

8
success_threshold float

The RMSE threshold below which the experiment is considered successful.

1e-07
constant_range List[float]

A list of two floats, specifying the lower and upper bounds for the constant values. Default is [-5.0, 5.0]. If constant_range is None, we automatically set it to [-5.0, 5.0] if the symbol library contains a symbol for constants.

None
num_variables int

The number of variables in the expression. Default is -1, which means we don't know.

-1
dataset_metadata dict

An optional dictionary containing metadata about this dataset. This could include information such as the name of the dataset, a citation for the dataset, number of variables, etc.

None
Source code in SRToolkit/dataset/srbenchmark.py
def add_dataset(self, dataset_name: str, ground_truth: List[str],  symbol_library: SymbolLibrary,
                original_equation: str = None, max_evaluations: int=-1, max_expression_length: int=-1,
                max_constants: int=8, success_threshold: float=1e-7, constant_range: List[float]=None,
                num_variables: int=-1, dataset_metadata: dict=None):

    """
    Adds a dataset to the benchmark.

    Args:
        dataset_name: The name of the dataset.
        ground_truth: The ground truth expression, represented as a list of tokens (strings) in the infix notation.
        symbol_library: The symbol library to use.
        original_equation: The original equation from which the ground truth expression was generated.
        max_evaluations: The maximum number of expressions to evaluate. Less than 0 means no limit.
        max_expression_length: The maximum length of the expression. Less than 0 means no limit.
        max_constants: The maximum number of constants allowed in the expression. Less than 0 means no limit.
        success_threshold: The RMSE threshold below which the experiment is considered successful.
        constant_range: A list of two floats, specifying the lower and upper bounds for the constant values.
            Default is [-5.0, 5.0]. If constant_range is None, we automatically set it to [-5.0, 5.0]
            if the symbol library contains a symbol for constants.
        num_variables: The number of variables in the expression. Default is -1, which means we don't know.
        dataset_metadata: An optional dictionary containing metadata about this dataset. This could include
            information such as the name of the dataset, a citation for the dataset, number of variables, etc.
    """
    if original_equation is None:
        original_equation = "".join(ground_truth)

    self.datasets[dataset_name] = {
        "path": self.base_dir + "/" + dataset_name + ".npy",
        "ground_truth": ground_truth,
        "original_equation": original_equation,
        "symbols": symbol_library,
        "max_evaluations": max_evaluations,
        "max_expression_length": max_expression_length,
        "max_constants": max_constants,
        "success_threshold": success_threshold,
        "constant_range": constant_range,
        "dataset_metadata": self.metadata.update(dataset_metadata),
        "num_variables": num_variables
    }

create_dataset(dataset_name)

Creates an instance of a dataset from the given dataset name.

Parameters:

Name Type Description Default
dataset_name str

The name of the dataset to create.

required

Returns:

Type Description

A SRDataset instance containing the data, ground truth expression, and metadata for the given dataset.

Raises:

Type Description
ValueError

If the dataset name is not found in the available datasets.

Source code in SRToolkit/dataset/srbenchmark.py
def create_dataset(self, dataset_name: str):
    """
    Creates an instance of a dataset from the given dataset name.

    Args:
        dataset_name: The name of the dataset to create.

    Returns:
        A SRDataset instance containing the data, ground truth expression, and metadata for the given dataset.

    Raises:
        ValueError: If the dataset name is not found in the available datasets.
    """
    if dataset_name in self.datasets:
        # Check if dataset exists otherwise download it from an url
        if os.path.exists(self.datasets[dataset_name]["path"]):
            data = np.load(self.datasets[dataset_name]["path"])
        else:
            raise ValueError(f"Could not find dataset {dataset_name} at {self.datasets[dataset_name]['path']}")

        X = data[:, :-1]
        y = data[:, -1]

        return SRDataset(X, y, ground_truth=self.datasets[dataset_name]["ground_truth"],
                         original_equation=self.datasets[dataset_name]["original_equation"],
                         symbols=self.datasets[dataset_name]["symbols"],
                         max_evaluations=self.datasets[dataset_name]["max_evaluations"],
                         max_expression_length=self.datasets[dataset_name]["max_expression_length"],
                         max_constants=self.datasets[dataset_name]["max_constants"],
                         success_threshold=self.datasets[dataset_name]["success_threshold"],
                         constant_range=self.datasets[dataset_name]["constant_range"],
                         dataset_metadata=self.datasets[dataset_name]["dataset_metadata"])
    else:
        raise ValueError(f"Dataset {dataset_name} not found")

list_datasets(verbose=True, num_variables=-1)

Lists the available datasets.

Parameters:

Name Type Description Default
verbose bool

If True, also prints out a description of each dataset.

True
num_variables int

If not -1, only show datasets with the given number of variables.

-1

Returns:

Type Description

A list of dataset names.

Source code in SRToolkit/dataset/srbenchmark.py
def list_datasets(self, verbose=True, num_variables: int=-1):
    """
    Lists the available datasets.

    Args:
        verbose (bool): If True, also prints out a description of each dataset.
        num_variables (int): If not -1, only show datasets with the given number of variables.

    Returns:
        A list of dataset names.
    """
    datasets = [dataset_name for dataset_name in self.datasets if num_variables < 0 or self.datasets[dataset_name]["num_variables"] == num_variables]
    datasets = sorted(datasets, key= lambda dataset_name: (self.datasets[dataset_name]["num_variables"], dataset_name))

    if verbose:
        # TODO: Make all names be of equal length for nicer output
        for d in datasets:
            if self.datasets[d]["num_variables"] == 1:
                variable_str = "1 variable"
            elif self.datasets[d]["num_variables"] < 1:
                variable_str = "Amount of variables unknown"
            else:
                variable_str = f"{self.datasets[d]['num_variables']} variables"

            print(f"{d}:\t{variable_str}, \tExpression: {self.datasets[d]['original_equation']}")
    return datasets

download_benchmark_data(url, directory_path) staticmethod

Downloads a benchmark dataset from the given url to the given directory path.

This function will first check if the directory_path exists. If not, it will create it. Then it will check if the directory_path is empty. If it is not empty, it will not download the data. If it is empty, it will download the data from the given url and extract it to the directory_path.

Parameters:

Name Type Description Default
url str

The url of the benchmark dataset to download.

required
directory_path str

The path of the directory where the dataset should be downloaded.

required

Returns:

Type Description

None

Source code in SRToolkit/dataset/srbenchmark.py
@staticmethod
def download_benchmark_data(url, directory_path):
    # Check if directory_path exist
    """
    Downloads a benchmark dataset from the given url to the given directory path.

    This function will first check if the directory_path exists. If not, it will create it. Then it will check if the directory_path is empty. If it is not empty, it will not download the data. If it is empty, it will download the data from the given url and extract it to the directory_path.

    Args:
        url (str): The url of the benchmark dataset to download.
        directory_path (str): The path of the directory where the dataset should be downloaded.

    Returns:
        None
    """
    if not os.path.exists(directory_path):
        os.makedirs(directory_path)

    # Check if directory_path is empty
    if not os.listdir(directory_path):
        # Download data from the url to the directory_path
        http_response = urlopen(url)
        zipfile = ZipFile(BytesIO(http_response.read()))
        zipfile.extractall(path=directory_path)

feynman(dataset_directory) staticmethod

Downloads the Feynman benchmark dataset, sets up symbol libraries, and adds predefined datasets to the benchmark.

This method downloads the Feynman benchmark dataset from a specified URL, initializes symbol libraries for symbolic regression with varying numbers of variables, and adds multiple predefined datasets to the benchmark with their respective equations and metadata.

Parameters:

Name Type Description Default
dataset_directory str

The directory path where the benchmark dataset will be downloaded and stored.

required

Returns:

Name Type Description
SRBenchmark

An instance of the SRBenchmark class containing the predefined datasets.

Source code in SRToolkit/dataset/srbenchmark.py
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
@staticmethod
def feynman(dataset_directory: str):
    """
    Downloads the Feynman benchmark dataset, sets up symbol libraries, and adds predefined datasets to the benchmark.

    This method downloads the Feynman benchmark dataset from a specified URL, initializes symbol libraries for symbolic regression with varying numbers of variables, and adds multiple predefined datasets to the benchmark with their respective equations and metadata.

    Args:
        dataset_directory (str): The directory path where the benchmark dataset will be downloaded and stored.

    Returns:
        SRBenchmark: An instance of the SRBenchmark class containing the predefined datasets.
    """
    url = "https://raw.githubusercontent.com/smeznar/SymbolicRegressionToolkit/master/data/feynman.zip"
    SRBenchmark.download_benchmark_data(url, dataset_directory)

    sl_1v = SymbolLibrary()
    sl_1v.add_symbol("+", symbol_type="op", precedence=0, np_fn="{} = {} + {}", latex_str=r"{} + {}")
    sl_1v.add_symbol("-", symbol_type="op", precedence=0, np_fn="{} = {} - {}", latex_str=r"{} - {}")
    sl_1v.add_symbol("*", symbol_type="op", precedence=1, np_fn="{} = {} * {}", latex_str=r"{} \cdot {}")
    sl_1v.add_symbol("/", symbol_type="op", precedence=1, np_fn="{} = {} / {}", latex_str=r"\frac{{{}}}{{{}}}")
    sl_1v.add_symbol("u-", symbol_type="fn", precedence=5, np_fn="{} = -{}", latex_str=r"- {}")
    sl_1v.add_symbol("sqrt", symbol_type="fn", precedence=5, np_fn="{} = np.sqrt({})", latex_str=r"\sqrt {{{}}}")
    sl_1v.add_symbol("sin", symbol_type="fn", precedence=5, np_fn="{} = np.sin({})", latex_str=r"\sin {}")
    sl_1v.add_symbol("cos", symbol_type="fn", precedence=5, np_fn="{} = np.cos({})", latex_str=r"\cos {}")
    sl_1v.add_symbol("exp", symbol_type="fn", precedence=5, np_fn="{} = np.exp({})", latex_str=r"e^{{{}}}")
    sl_1v.add_symbol("arcsin", symbol_type="fn", precedence=5, np_fn="{} = np.arcsin({})", latex_str=r"\arcsin {}")
    sl_1v.add_symbol("tanh", symbol_type="fn", precedence=5, np_fn="{} = np.tanh({})", latex_str=r"\tanh {}")
    sl_1v.add_symbol("ln", symbol_type="fn", precedence=5, np_fn="{} = np.log({})", latex_str=r"\ln {}")
    sl_1v.add_symbol("^2", symbol_type="fn", precedence=-1, np_fn="{} = {}**2", latex_str=r"{}^2")
    sl_1v.add_symbol("^3", symbol_type="fn", precedence=-1, np_fn="{} = {}**3", latex_str=r"{}^3")
    sl_1v.add_symbol("pi", symbol_type="lit", precedence=5, np_fn="np.full(X.shape[0], np.pi)", latex_str=r"\pi")
    sl_1v.add_symbol("C", "const", 5, np_fn="np.full(X.shape[0], C[{}])", latex_str=r"C_{{{}}}")
    sl_1v.add_symbol("X_0", "var", 5, "X[:, 0]", r"X_{0}")

    sl_2v = copy.copy(sl_1v)
    sl_2v.add_symbol("X_1", "var", 5, "X[:, 1]", r"X_{1}")

    sl_3v = copy.copy(sl_2v)
    sl_3v.add_symbol("X_2", "var", 5, "X[:, 2]", r"X_{2}")

    sl_4v = copy.copy(sl_3v)
    sl_4v.add_symbol("X_3", "var", 5, "X[:, 3]", r"X_{3}")

    sl_5v = copy.copy(sl_4v)
    sl_5v.add_symbol("X_4", "var", 5, "X[:, 4]", r"X_{4}")

    sl_6v = copy.copy(sl_5v)
    sl_6v.add_symbol("X_5", "var", 5, "X[:, 5]", r"X_{5}")

    sl_8v = copy.copy(sl_6v)
    sl_8v.add_symbol("X_6", "var", 5, "X[:, 6]", r"X_{6}")
    sl_8v.add_symbol("X_7", "var", 5, "X[:, 7]", r"X_{7}")

    sl_9v = copy.copy(sl_8v)
    sl_9v.add_symbol("X_8", "var", 5, "X[:, 8]", r"X_{8}")

    benchmark = SRBenchmark("feynman", dataset_directory)
    benchmark.add_dataset("I.16.6", ["(", "X_2", "+", "X_1", ")", "/", "(", "1", "+", "(", "X_2", "*", "X_1", ")", "/", "(", "X_0", "^2", ")", ")"],
                          sl_3v, original_equation="v1 = (u+v)/(1+u*v/c^2)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.15.4", ["u-", "X_0", "*", "X_1", "*", "cos", "(", "X_2", ")"], sl_3v, original_equation="E_n = -mom*B*cos(theta)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.27.16", ["X_0", "*", "X_1", "*", "X_2", "^2"], sl_3v, original_equation="flux = epsilon*c*Ef^2", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.11.19", ["X_0", "*", "X_3", "+", "X_1", "*", "X_4", "+", "X_2", "*", "X_5"], sl_6v, original_equation="A = x1*y1+x2*y2+x3*y3", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=6,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.15.3x", ["(", "X_0", "-", "X_1", "*", "X_3", ")", "/", "sqrt", "(", "1", "-", "X_1", "^2", "/", "X_2", "^2", ")"], sl_4v, original_equation="x1 = (x-u*t)/sqrt(1-u^2/c^2)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=4,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.10.7", ["X_0", "/", "sqrt", "(", "1", "-", "X_1", "^2", "/", "X_2", "^2", ")"], sl_3v, original_equation="m = m_0/sqrt(1-v^2/c^2)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.9.18", ["X_2", "*", "X_0", "*", "X_1", "/", "(", "(", "X_4", "-", "X_3", ")", "^2", "+", "(", "X_6", "-", "X_5", ")", "^2", "+", "(", "X_8", "-", "X_7", ")", "^2",")"], sl_9v, original_equation="F = G*m1*m2/((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=9,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.15.3t", ["(", "X_3", "-", "X_2", "*", "X_0", "/", "X_1", "^2", ")", "/", "sqrt", "(", "1", "-", "X_2", "^2", "/", "X_1", "^2", ")"], sl_4v, original_equation="t1 = (t-u*x/c^2)/sqrt(1-u^2/c^2)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=4,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.36.38", ["(", "X_0", "*", "X_1", ")", "/", "(", "X_2", "*", "X_3",")", "+", "(", "(", "X_0", "*", "X_4", ")", "/", "(", "X_5", "*", "X_6", "^2", "*", "X_2", "*", "X_3", ")", ")", "*", "X_7"], sl_8v, original_equation="f = mom*H/(kb*T)+(mom*alpha)/(epsilon*c**2*kb*T)*M", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=8,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.43.43", ["(", "1", "/", "(", "X_0", "-", "1", ")", ")", "*", "X_1", "*", "X_3", "/", "X_2"], sl_4v, original_equation="kappa = 1/(gamma-1)*kb*v/A", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=4,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.15.5", ["u-", "X_0", "*", "X_1", "*", "cos", "(", "X_2", ")"], sl_3v, original_equation="E_n = -p_d*Ef*cos(theta)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.37.4", ["X_0", "+", "X_1", "+", "2", "*", "sqrt", "(", "X_0", "*", "X_1", ")", "*", "cos", "(", "X_2", ")"], sl_3v, original_equation="Int = I1+I2+2*sqrt(I1*I2)*cos(delta)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.6.11", ["(", "1", "/", "(", "4", "*", "pi", "*", "X_0", ")", ")", "*", "X_1", "*", "cos", "(", "X_2", ")", "/", "X_3", "^2"], sl_4v, original_equation="Volt = 1/(4*pi*epsilon)*p_d*cos(theta)/r^2", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=4,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("III.7.38", ["2", "*", "X_0", "*", "X_1", "/", "(", "X_2", "/", "(", "2", "*", "pi", ")", ")"], sl_3v, original_equation="omega = 2*mom*B/(h/(2*pi))", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.34.2a", ["X_0", "*", "X_1", "/", "(", "2", "*", "pi", "*", "X_2", ")"], sl_3v, original_equation="l = q*v/(2*pi*r)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.13.23", ["X_0", "/", "sqrt", "(", "1", "-", "X_1", "^2", "/", "X_2", "^2", ")"], sl_3v, original_equation="rho_c = rho_c_0/sqrt(1-v^2/c^2)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.29.4", ["X_0", "/", "X_1"], sl_2v, original_equation="k = omega/c", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=2,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.38.12", ["4", "*", "pi", "*", "X_3", "*", "(", "X_2", "/", "(", "2", "*", "pi", ")", ")", "^2", "/", "(", "X_0", "*", "X_1", "^2", ")"], sl_4v, original_equation="r = 4*pi*epsilon*(h/(2*pi))^2/(m*q^2)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=4,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("III.15.27", ["2", "*", "pi", "*", "X_0", "/", "(", "X_1", "*", "X_2", ")"], sl_3v, original_equation="k = 2*pi*alpha/(n*d)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.41.16", ["(", "X_2", "/", "(", "2", "*", "pi", ")", ")", "*", "X_0", "^3", "/", "(", "pi", "^2", "*", "X_4", "^2", "*", "(", "exp", "(", "(", "X_2", "/", "(", "2", "*", "pi", ")", ")", "*", "X_0", "/", "(", "X_3", "*", "X_1", ")", ")", "-", "1", ")", ")"], sl_5v, original_equation="L_rad = h/(2*pi)*omega^3/(pi^2*c^2*(exp((h/(2*pi))*omega/(kb*T))-1))", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=5,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.48.20", ["X_0", "*", "X_2", "^2", "/", "sqrt", "(", "1", "-", "X_1", "^2", "/", "X_2", "^2", ")"], sl_3v, original_equation="E_n = m*c^2/sqrt(1-v^2/c^2)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.11.20", ["X_0", "*", "X_1", "^2", "*", "X_2", "/", "(", "3", "*", "X_3", "*", "X_4", ")"], sl_5v, original_equation="Pol = n_rho*p_d^2*Ef/(3*kb*T)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=5,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.25.13", ["X_0", "/", "X_1"], sl_2v, original_equation="Volt = q/C", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=2,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("III.15.12", ["2", "*", "X_0", "*", "(", "1", "-", "cos", "(", "X_1", "*", "X_2", ")", ")"], sl_3v, original_equation="E_n = 2*U*(1-cos(k*d))", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.24.6", ["0.25", "*", "X_0", "*", "(", "X_1", "^2", "+", "X_2", "^2", ")", "*", "X_3", "^2"], sl_4v, original_equation="E_n = 1/2*m*(omega^2+omega_0^2)*1/2*x^2", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=4,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.34.27", ["(", "X_1", "/", "(", "2", "*", "pi", ")", ")", "*", "X_0"], sl_2v, original_equation="E_n =(h/(2*pi))*omega", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=2,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.43.31", ["X_0", "*", "X_2", "*", "X_1"], sl_3v, original_equation="D = mob*kb*T", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.29.16", ["sqrt", "(", "X_0", "^2", "+", "X_1", "^2", "-", "2", "*", "X_0", "*", "X_1", "*", "cos", "(", "X_2", "-", "X_3", ")", ")"], sl_4v, original_equation="x = sqrt(x1^2+x2^2-2*x1*x2*cos(theta1-theta2))", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=4,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.18.4", ["(","X_0", "*", "X_2", "+", "X_1", "*", "X_3", ")", "/", "(", "X_0", "+", "X_1", ")"], sl_4v, original_equation="r = (m1*r1+m2*r2)/(m1+m2)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=4,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.6.15a", ["(", "X_1", "/", "(", "4", "*", "pi", "*", "X_0", ")", ")", "*", "(", "3", "*", "X_5", "/", "(", "X_2", "^2", "*", "X_2", "^3", ")", ")", "*", "sqrt", "(", "X_3", "^2", "+", "X_4", "^2", ")"],
                          sl_6v, original_equation="Ef = p_d/(4*pi*epsilon)*3*z/r^5*sqrt(x^2+y^2)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=6,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.30.3", ["X_0", "*", "sin", "(", "X_2", "*", "X_1", "/", "2", ")", "^2", "/", "sin", "(", "X_1", "/", "2", ")", "^2"], sl_3v, original_equation="Int = Int_0*sin(n*theta/2)^2/sin(theta/2)^2", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("III.9.52", ["(", "X_0", "*", "X_1", "*", "X_2", "/", "(", "X_3", "/", "(", "2", "*", "pi", ")", ")", ")", "*", "sin", "(", "(", "X_4", "-", "X_5", ")", "*", "X_2", "/", "2", ")", "^2", "/", "(", "(", "X_4", "-", "X_5", ")", "*", "X_2", "/", "2", ")","^2"], sl_6v, original_equation="prob = (p_d*Ef*t/(h/(2*pi)))*sin((omega-omega_0)*t/2)^2/((omega-omega_0)*t/2)^2", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=6,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.34.2", ["X_0", "*", "X_1", "*", "X_2", "/", "2"], sl_3v, original_equation="mom = q*v*r/2", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.39.11", ["(", "1", "/", "(", "X_0", "-", "1", ")", ")", "*", "X_1", "*", "X_2"], sl_3v, original_equation="E_n = (1/(gamma-1))*pr*V", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.11.28", ["1", "+", "X_0", "*", "X_1", "/", "(", "1", "-", "(", "X_0", "*", "X_1", "/", "3", ")", ")"], sl_2v, original_equation="theta = 1+n*alpha/(1-(n*alpha/3))", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=2,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.3.24", ["X_0", "/", "(", "4", "*", "pi", "*", "X_1", "^2", ")"], sl_2v, original_equation="flux = Pwr/(4*pi*r^2)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=2,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.24.17", ["sqrt", "(", "X_0", "^2", "/", "X_1", "^2", "-", "pi", "^2", "/", "X_2", "^2", ")"], sl_3v, original_equation="k = sqrt(omega^2/c^2-pi^2/d^2)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.13.17", ["(", "1", "/", "(", "4", "*", "pi", "*", "X_0", "*", "X_1", "^2", ")", ")", "*", "2", "*", "X_2", "/", "X_3"],
                          sl_4v, original_equation="B = 1/(4*pi*epsilon*c^2)*2*I/r", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=4,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.12.5", ["X_0", "*", "X_1"], sl_2v, original_equation="F = q2*Ef", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=2,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    # Check again if you find the time
    benchmark.add_dataset("II.35.18",
                          ["X_0", "/", "(", "exp", "(", "X_3", "*", "X_4", "/", "(", "X_1", "*", "X_2", ")", ")",
                           "+", "exp", "(", "u-", "X_3", "*", "X_4", "/", "(", "X_1", "*", "X_2", ")", ")", ")"],
                          sl_5v, original_equation="n_0/(exp(mom*B/(kb*T))+exp(-mom*B/(kb*T)))",
                          max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=5,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.34.11", ["X_0", "*", "X_1", "*", "X_2", "/", "(", "2", "*", "X_3", ")"], sl_4v,
                          original_equation="g_*q*B/(2*m)", max_evaluations=100000, max_expression_length=50,
                          success_threshold=1e-7, num_variables=4, dataset_metadata=benchmark.metadata,
                          constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.34.29a", ["X_0", "*", "X_1", "/", "(", "4", "*", "pi", "*", "X_2", ")"], sl_3v,
                          original_equation="q*h/(4*pi*m)", max_evaluations=100000, max_expression_length=50,
                          success_threshold=1e-7, num_variables=3, dataset_metadata=benchmark.metadata,
                          constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.32.17",
                          ["(", "0.5", "*", "X_0", "*", "X_1", "*", "X_2", "^2", ")", "*", "(", "8", "*",
                           "pi", "*", "X_3", "^2", "/", "3", ")", "*", "(", "(","X_4", "^2", "*", "X_4", "^2",")", "/", "(", "X_4", "^2",
                           "-", "X_5", "^2", ")", "^2", ")"], sl_6v,
                          original_equation="(1/2*epsilon*c*Ef**2)*(8*pi*r**2/3)*(omega**4/(omega**2-omega_0**2)**2)",
                          max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=6,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.35.21",
                          ["X_0", "*", "X_1", "*", "tanh", "(", "X_1", "*", "X_2", "/", "(", "X_3", "*", "X_4", ")",
                           ")"], sl_5v, original_equation="n_rho*mom*tanh(mom*B/(kb*T))", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=5,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.44.4", ["X_0", "*", "X_1", "*", "X_2", "*", "ln", "(", "X_4", "/", "X_3", ")"], sl_5v,
                          original_equation="n*kb*T*ln(V2/V1)", max_evaluations=100000, max_expression_length=50,
                          success_threshold=1e-7, num_variables=5, dataset_metadata=benchmark.metadata,
                          constant_range=[-5.0, 5.0])
    benchmark.add_dataset("III.4.32",
                          ["1", "/", "(", "exp", "(", "(", "X_0", "/", "(", "2", "*", "pi", ")", ")", "*", "X_1",
                           "/", "(", "X_2", "*", "X_3", ")", ")", "-", "1", ")"], sl_4v,
                          original_equation="1/(exp((h/(2*pi))*omega/(kb*T))-1)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=4,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.10.9", ["(", "X_0", "/", "X_1", ")", "*", "1", "/", "(", "1", "+", "X_2", ")"], sl_3v,
                          original_equation="sigma_den/epsilon*1/(1+chi)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.38.3", ["X_0", "*", "X_1", "*", "X_3", "/", "X_2"], sl_4v,
                          original_equation="Y*A*x/d", max_evaluations=100000, max_expression_length=50,
                          success_threshold=1e-7, num_variables=4, dataset_metadata=benchmark.metadata,
                          constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.6.2b",
                          ["exp", "(", "u-", "(", "(", "(", "X_1", "-", "X_2", ")", "/", "X_0", ")", "^2", ")", "/", "2", ")",
                           "/", "(", "sqrt", "(", "2", "*", "pi", ")", "*", "X_0", ")"], sl_3v,
                          original_equation="exp(-((theta-theta1)/sigma)**2/2)/(sqrt(2*pi)*sigma)",
                          max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.8.31", ["X_0", "*", "X_1", "^2", "/", "2"], sl_2v,
                          original_equation="epsilon*Ef**2/2", max_evaluations=100000, max_expression_length=50,
                          success_threshold=1e-7, num_variables=2, dataset_metadata=benchmark.metadata,
                          constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.6.2a",
                          ["exp", "(", "u-", "X_0", "^2", "/", "2", ")", "/", "sqrt", "(", "2", "*", "pi", ")"],
                          sl_1v, original_equation="exp(-theta**2/2)/sqrt(2*pi)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=1,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("III.12.43", ["X_0", "*", "(", "X_1", "/", "(", "2", "*", "pi", ")", ")"], sl_2v,
                          original_equation="n*(h/(2*pi))", max_evaluations=100000, max_expression_length=50,
                          success_threshold=1e-7, num_variables=2, dataset_metadata=benchmark.metadata,
                          constant_range=[-5.0, 5.0])
    benchmark.add_dataset("III.17.37", ["X_0", "*", "(", "1", "+", "X_1", "*", "cos", "(", "X_2", ")", ")"], sl_3v,
                          original_equation="beta*(1+alpha*cos(theta))", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("III.10.19",
                          ["X_0", "*", "sqrt", "(", "X_1", "^2", "+", "X_2", "^2", "+", "X_3", "^2", ")"], sl_4v,
                          original_equation="mom*sqrt(Bx**2+By**2+Bz**2)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=4,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.11.7",
                          ["X_0", "*", "(", "1", "+", "X_4", "*", "X_5", "*", "cos", "(", "X_3", ")", "/", "(",
                           "X_1", "*", "X_2", ")", ")"], sl_6v,
                          original_equation="n_0*(1+p_d*Ef*cos(theta)/(kb*T))", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=6,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.39.1", ["1.5", "*", "X_0", "*", "X_1"], sl_2v, original_equation="3/2*pr*V",
                          max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=2,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.37.1", ["X_0", "*", "(", "1", "+", "X_2", ")", "*", "X_1"], sl_3v,
                          original_equation="mom*(1+chi)*B", max_evaluations=100000, max_expression_length=50,
                          success_threshold=1e-7, num_variables=3, dataset_metadata=benchmark.metadata,
                          constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.12.4",
                          ["X_0", "*", "X_2", "/", "(", "4", "*", "pi", "*", "X_1", "*", "X_2", "^3", ")"],
                          sl_3v, original_equation="q1*r/(4*pi*epsilon*r**3)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.27.18", ["X_0", "*", "X_1", "^2"], sl_2v, original_equation="epsilon*Ef**2",
                          max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=2,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.12.2",
                          ["X_0", "*", "X_1", "*", "X_3", "/", "(", "4", "*", "pi", "*", "X_2", "*", "X_3", "^3", ")"],
                          sl_4v, original_equation="q1*q2*r/(4*pi*epsilon*r**3)",
                          max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=4,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("III.13.18",
                          ["2", "*", "X_0", "*", "X_1", "^2", "*", "X_2", "/", "(", "X_3", "/", "(", "2", "*", "pi",
                           ")", ")"], sl_4v, original_equation="2*E_n*d**2*k/(h/(2*pi))", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=4,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.11.3",
                          ["X_0", "*", "X_1", "/", "(", "X_2", "*", "(", "X_3", "^2", "-", "X_4", "^2", ")", ")"],
                          sl_5v, original_equation="q*Ef/(m*(omega_0**2-omega**2))", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=5,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.40.1",
                          ["X_0", "*", "exp", "(", "u-", "X_1", "*", "X_4", "*", "X_2", "/", "(", "X_5", "*", "X_3",
                           ")", ")"], sl_6v, original_equation="n_0*exp(-m*g*x/(kb*T))", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=6,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("III.21.20", ["u-", "X_0", "*", "X_1", "*", "X_2", "/", "X_3"], sl_4v,
                          original_equation="-rho_c_0*q*A_vec/m", max_evaluations=100000, max_expression_length=50,
                          success_threshold=1e-7, num_variables=4, dataset_metadata=benchmark.metadata,
                          constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.43.16", ["X_0", "*", "X_1", "*", "X_2", "/", "X_3"], sl_4v,
                          original_equation="mu_drift*q*Volt/d", max_evaluations=100000, max_expression_length=50,
                          success_threshold=1e-7, num_variables=4, dataset_metadata=benchmark.metadata,
                          constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.15.10",
                          ["X_0", "*", "X_1", "/", "sqrt", "(", "1", "-", "X_1", "^2", "/", "X_2", "^2", ")"],
                          sl_3v, original_equation="m_0*v/sqrt(1-v**2/c**2)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.30.5", ["arcsin", "(", "X_0", "/", "(", "X_2", "*", "X_1", ")", ")"], sl_3v,
                          original_equation="arcsin(lambd/(n*d))", max_evaluations=100000, max_expression_length=50,
                          success_threshold=1e-7, num_variables=3, dataset_metadata=benchmark.metadata,
                          constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.50.26",
                          ["X_0", "*", "(", "cos", "(", "X_1", "*", "X_2", ")", "+", "X_3", "*", "cos", "(", "X_1",
                           "*", "X_2", ")", "^2", ")"], sl_4v,
                          original_equation="x1*(cos(omega*t)+alpha*cos(omega*t)**2)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=4,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.12.11",
                          ["X_0", "*", "(", "X_1", "+", "X_2", "*", "X_3", "*", "sin", "(", "X_4", ")", ")"], sl_5v,
                          original_equation="q*(Ef+B*v*sin(theta))", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=5,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.6.2",
                          ["exp", "(", "u-", "(", "(", "X_1", "/", "X_0", ")", "^2", ")",  "/", "2", ")", "/", "(", "sqrt",
                           "(", "2", "*", "pi", ")", "*", "X_0", ")"], sl_2v,
                          original_equation="exp(-(theta/sigma)**2/2)/(sqrt(2*pi)*sigma)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=2,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.14.4", ["0.5", "*", "X_0", "*", "X_1", "^2"], sl_2v,
                          original_equation="1/2*k_spring*x**2", max_evaluations=100000, max_expression_length=50,
                          success_threshold=1e-7, num_variables=2, dataset_metadata=benchmark.metadata,
                          constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.47.23", ["sqrt", "(", "X_0", "*", "X_1", "/", "X_2", ")"], sl_3v,
                          original_equation="sqrt(gamma*pr/rho)", max_evaluations=100000, max_expression_length=50,
                          success_threshold=1e-7, num_variables=3, dataset_metadata=benchmark.metadata,
                          constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.8.7",
                          ["0.6", "*", "X_0", "^2", "/", "(", "4", "*", "pi", "*", "X_1", "*", "X_2", ")"],
                          sl_3v, original_equation="3/5*q**2/(4*pi*epsilon*d)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("III.15.14",
                          ["(", "X_0", "/", "(", "2", "*", "pi", ")", ")", "^2", "/", "(", "2", "*", "X_1", "*",
                           "X_2", "^2", ")"], sl_3v, original_equation="(h/(2*pi))**2/(2*E_n*d**2)",
                          max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.34.14",
                          ["(", "(", "1", "+", "(", "X_1", "/", "X_0", ")", ")", "/", "sqrt", "(", "1", "-", "X_1", "^2", "/",
                           "X_0", "^2", ")", ")", "*", "X_2"], sl_3v,
                          original_equation="((1+v/c)/sqrt(1-v**2/c**2))*omega_0", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("III.8.54",
                          ["sin", "(", "X_0", "*", "X_1", "/", "(", "X_2", "/", "(", "2", "*", "pi", ")", ")", ")",
                           "^2"], sl_3v, original_equation="sin(E_n*t/(h/(2*pi)))**2", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.26.2", ["arcsin", "(", "X_0", "*", "sin", "(", "X_1", ")", ")"], sl_2v,
                          original_equation="arcsin(n*sin(theta2))", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=2,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("III.19.51",
                          ['(', "u-", "X_0", "*", "(", "X_1", "^2", "*", "X_1", "^2", ")", "/", "(", "2", "*", "(", "4", "*", "pi", "*", "X_4",
                           ")", "^2", ")", "*", "(", "X_2", "/", "(", "2", "*", "pi", ")", ")", "^2", ")", "*", "(", "1",
                           "/", "X_3", "^2", ")"], sl_5v,
                          original_equation="-m*q**4/(2*(4*pi*epsilon)**2*(h/(2*pi))**2)*(1/n**2)",
                          max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=5,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("III.4.33",
                          ["(", "X_0", "/", "(", "2", "*", "pi", ")", ")", "*", "X_1", "/", "(", "exp", "(", "(",
                           "X_0", "/", "(", "2", "*", "pi", ")", ")", "*", "X_1", "/", "(", "X_2", "*", "X_3", ")",
                           ")", "-", "1", ")"], sl_4v,
                          original_equation="(h/(2*pi))*omega/(exp((h/(2*pi))*omega/(kb*T))-1)",
                          max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=4,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.34.1", ["X_2", "/", "(", "1", "-", "X_1", "/", "X_0", ")"], sl_3v,
                          original_equation="omega_0/(1-v/c)", max_evaluations=100000, max_expression_length=50,
                          success_threshold=1e-7, num_variables=3, dataset_metadata=benchmark.metadata,
                          constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.11.27",
                          ["(", "X_0", "*", "X_1", "/", "(", "1", "-", "(", "X_0", "*", "X_1", "/", "3", ")", ")", ")", "*",
                           "X_2", "*", "X_3"], sl_4v, original_equation="n*alpha/(1-(n*alpha/3))*epsilon*Ef",
                          max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=4,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.13.34",
                          ["X_0", "*", "X_1", "/", "sqrt", "(", "1", "-", "X_1", "^2", "/", "X_2", "^2", ")"],
                          sl_3v, original_equation="rho_c_0*v/sqrt(1-v**2/c**2)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.4.23", ["X_0", "/", "(", "4", "*", "pi", "*", "X_1", "*", "X_2", ")"], sl_3v,
                          original_equation="q/(4*pi*epsilon*r)", max_evaluations=100000, max_expression_length=50,
                          success_threshold=1e-7, num_variables=3, dataset_metadata=benchmark.metadata,
                          constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.32.5",
                          ["X_0", "^2", "*", "X_1", "^2", "/", "(", "6", "*", "pi", "*", "X_2", "*", "X_3", "^3", ")"],
                          sl_4v, original_equation="q**2*a**2/(6*pi*epsilon*c**3)",
                          max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=4,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.13.12",
                          ["X_4", "*", "X_0", "*", "X_1", "*", "(", "1", "/", "X_3", "-", "1", "/", "X_2", ")"],
                          sl_5v, original_equation="G*m1*m2*(1/r2-1/r1)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=5,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.2.42", ["X_0", "*", "(", "X_2", "-", "X_1", ")", "*", "X_3", "/", "X_4"], sl_5v,
                          original_equation="kappa*(T2-T1)*A/d", max_evaluations=100000, max_expression_length=50,
                          success_threshold=1e-7, num_variables=5, dataset_metadata=benchmark.metadata,
                          constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.27.6", ["1", "/", "(", "1", "/", "X_0", "+", "X_2", "/", "X_1", ")"], sl_3v,
                          original_equation="1/(1/d1+n/d2)", max_evaluations=100000, max_expression_length=50,
                          success_threshold=1e-7, num_variables=3, dataset_metadata=benchmark.metadata,
                          constant_range=[-5.0, 5.0])
    benchmark.add_dataset("III.14.14",
                          ["X_0", "*", "(", "exp", "(", "X_1", "*", "X_2", "/", "(", "X_3", "*", "X_4", ")", ")",
                           "-", "1", ")"], sl_5v, original_equation="I_0*(exp(q*Volt/(kb*T))-1)",
                          max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=5,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.18.12", ["X_0", "*", "X_1", "*", "sin", "(", "X_2", ")"], sl_3v,
                          original_equation="r*F*sin(theta)", max_evaluations=100000, max_expression_length=50,
                          success_threshold=1e-7, num_variables=3, dataset_metadata=benchmark.metadata,
                          constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.18.14", ["X_0", "*", "X_1", "*", "X_2", "*", "sin", "(", "X_3", ")"], sl_4v,
                          original_equation="m*r*v*sin(theta)", max_evaluations=100000, max_expression_length=50,
                          success_threshold=1e-7, num_variables=4, dataset_metadata=benchmark.metadata,
                          constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.21.32",
                          ["X_0", "/", "(", "4", "*", "pi", "*", "X_1", "*", "X_2", "*", "(", "1", "-", "X_3", "/",
                           "X_4", ")", ")"], sl_5v, original_equation="q/(4*pi*epsilon*r*(1-v/c))",
                          max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=5,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.38.14", ["X_0", "/", "(", "2", "*", "(", "1", "+", "X_1", ")", ")"], sl_2v,
                          original_equation="Y/(2*(1+sigma))", max_evaluations=100000, max_expression_length=50,
                          success_threshold=1e-7, num_variables=2, dataset_metadata=benchmark.metadata,
                          constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.34.8", ["X_0", "*", "X_1", "*", "X_2", "/", "X_3"], sl_4v, original_equation="q*v*B/p",
                          max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=4,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.8.14",
                          ["sqrt", "(", "(", "X_1", "-", "X_0", ")", "^2", "+", "(", "X_3", "-", "X_2", ")", "^2",
                           ")"], sl_4v, original_equation="sqrt((x2-x1)**2+(y2-y1)**2)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=4,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.6.15b",
                          ["(", "X_1", "/", "(", "4", "*", "pi", "*", "X_0", ")", ")", "*", "3", "*", "cos", "(", "X_2", ")",
                           "*", "sin", "(", "X_2", ")", "/", "X_3", "^3"], sl_4v,
                          original_equation="p_d/(4*pi*epsilon)*3*cos(theta)*sin(theta)/r**3",
                          max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=4,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.12.1", ["X_0", "*", "X_1"], sl_2v, original_equation="mu*Nn", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=2,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("II.34.29b",
                          ["X_0", "*", "X_3", "*", "X_4", "*", "X_2", "/", "(", "X_1", "/", "(", "2", "*", "pi",
                           ")", ")"], sl_5v, original_equation="g_*mom*B*Jz/(h/(2*pi))", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=5,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.13.4",
                          ["0.5", "*", "X_0", "*", "(", "X_1", "^2", "+", "X_2", "^2", "+", "X_3", "^2",
                           ")"], sl_4v, original_equation="1/2*m*(v**2+u**2+w**2)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=4,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.39.22", ["X_0", "*", "X_3", "*", "X_1", "/", "X_2"], sl_4v,
                          original_equation="n*kb*T/V", max_evaluations=100000, max_expression_length=50,
                          success_threshold=1e-7, num_variables=4, dataset_metadata=benchmark.metadata,
                          constant_range=[-5.0, 5.0])
    benchmark.add_dataset("I.14.3", ["X_0", "*", "X_1", "*", "X_2"], sl_3v, original_equation="m*g*z",
                          max_evaluations=100000, max_expression_length=50, success_threshold=1e-7, num_variables=3,
                          dataset_metadata=benchmark.metadata, constant_range=[-5.0, 5.0])

    return benchmark

nguyen(dataset_directory) staticmethod

Downloads and initializes the Nguyen benchmark datasets for symbolic regression.

This method downloads the Nguyen symbolic regression benchmark datasets from a specified URL and initializes a set of datasets using a provided dataset directory. It creates two symbol libraries for equations with one variable and two variables, respectively, and populates the benchmark with various Nguyen equations, each represented with its symbolic tokens and associated symbol library.

Parameters:

Name Type Description Default
dataset_directory str

The directory where the benchmark datasets will be stored and accessed.

required

Returns:

Name Type Description
SRBenchmark

An initialized SRBenchmark instance containing the Nguyen datasets.

Source code in SRToolkit/dataset/srbenchmark.py
@staticmethod
def nguyen(dataset_directory: str):
    """
    Downloads and initializes the Nguyen benchmark datasets for symbolic regression.

    This method downloads the Nguyen symbolic regression benchmark datasets from a specified URL
    and initializes a set of datasets using a provided dataset directory. It creates two symbol libraries
    for equations with one variable and two variables, respectively, and populates the benchmark with various
    Nguyen equations, each represented with its symbolic tokens and associated symbol library.

    Args:
        dataset_directory (str): The directory where the benchmark datasets will be stored and accessed.

    Returns:
        SRBenchmark: An initialized SRBenchmark instance containing the Nguyen datasets.
    """
    url = "https://raw.githubusercontent.com/smeznar/SymbolicRegressionToolkit/master/data/nguyen.zip"
    SRBenchmark.download_benchmark_data(url, dataset_directory)
    # we create a SymbolLibrary with 1 and with 2 variables
    # Each library contains +, -, *, /, sin, cos, exp, log, sqrt, ^2, ^3
    sl_1v = SymbolLibrary()
    sl_1v.add_symbol("+", symbol_type="op", precedence=0, np_fn="{} = {} + {}")
    sl_1v.add_symbol("-", symbol_type="op", precedence=0, np_fn="{} = {} - {}")
    sl_1v.add_symbol("*", symbol_type="op", precedence=1, np_fn="{} = {} * {}")
    sl_1v.add_symbol("/", symbol_type="op", precedence=1, np_fn="{} = {} / {}")
    sl_1v.add_symbol("sin", symbol_type="fn", precedence=5, np_fn="{} = np.sin({})")
    sl_1v.add_symbol("cos", symbol_type="fn", precedence=5, np_fn="{} = np.cos({})")
    sl_1v.add_symbol("exp", symbol_type="fn", precedence=5, np_fn="{} = np.exp({})")
    sl_1v.add_symbol("log", symbol_type="fn", precedence=5, np_fn="{} = np.log10({})")
    sl_1v.add_symbol("sqrt", symbol_type="fn", precedence=5, np_fn="{} = np.sqrt({})")
    sl_1v.add_symbol("^2", symbol_type="fn", precedence=5, np_fn="{} = np.power({}, 2)")
    sl_1v.add_symbol("^3", symbol_type="fn", precedence=5, np_fn="{} = np.power({}, 3)")
    sl_1v.add_symbol("X_0", "var", 5, "X[:, 0]")

    sl_2v = copy.copy(sl_1v)
    sl_2v.add_symbol("X_1", "var", 5, "X[:, 1]")

    # Add datasets to the benchmark
    benchmark = SRBenchmark("Nguyen", dataset_directory)
    benchmark.add_dataset("NG-1", ["X_0", "+", "X_0", "^2", "+", "X_0", "^3"], sl_1v,
                          original_equation="x+x^2+x^3", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=1,
                          dataset_metadata=benchmark.metadata)
    benchmark.add_dataset("NG-2", ["X_0", "+", "X_0", "^2", "+", "X_0", "^3", "+", "X_0","*", "X_0", "^3"], sl_1v,
                          original_equation="x+x^2+x^3+x^4", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=1,
                          dataset_metadata=benchmark.metadata)
    benchmark.add_dataset("NG-3", ["X_0", "+", "X_0", "^2", "+", "X_0", "^3", "+", "X_0","*", "X_0", "^3", "+", "X_0","^2", "*", "X_0", "^3"], sl_1v,
                          original_equation="x+x^2+x^3+x^4+x^5", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=1,
                          dataset_metadata=benchmark.metadata)
    benchmark.add_dataset("NG-4", ["X_0", "+", "X_0", "^2", "+", "X_0", "^3", "+", "X_0","*", "X_0", "^3", "+", "X_0","^2", "*", "X_0", "^3", "+", "X_0","^3", "*", "X_0", "^3"], sl_1v,
                          original_equation="x+x^2+x^3+x^4+x^5+x^6", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=1,
                          dataset_metadata=benchmark.metadata)
    benchmark.add_dataset("NG-5", ["sin", "(", "X_0", "^2", ")", "*", "cos", "(", "X_0", ")", "-", "1"], sl_1v,
                          original_equation="sin(x^2)*cos(x)-1", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=1,
                          dataset_metadata=benchmark.metadata)
    benchmark.add_dataset("NG-6", ["sin", "(", "X_0", ")", "+", "sin", "(", "X_0", "+", "X_0", "^2", ")"], sl_1v,
                          original_equation="sin(x)+sin(x+x^2)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=1,
                          dataset_metadata=benchmark.metadata)
    benchmark.add_dataset("NG-7", ["log", "(", "1", "+", "X_0", ")", "+", "log", "(", "1", "+", "X_0", "^2", ")"], sl_1v,
                          original_equation="log(1+x)+log(1+x^2)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=1,
                          dataset_metadata=benchmark.metadata)
    benchmark.add_dataset("NG-8", ["sqrt", "(", "X_0", ")"], sl_1v,
                          original_equation="sqrt(x)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=1,
                          dataset_metadata=benchmark.metadata)
    benchmark.add_dataset("NG-9", ["sin", "(", "X_0", ")", "+", "sin", "(", "X_1", "^2", ")"], sl_2v,
                          original_equation="sin(x)+sin(y^2)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=2,
                          dataset_metadata=benchmark.metadata)
    benchmark.add_dataset("NG-10", ["2", "*", "sin", "(", "X_0", ")", "*", "cos", "(", "X_1", ")"], sl_2v,
                          original_equation="2*sin(x)*cos(y)", max_evaluations=100000,
                          max_expression_length=50, success_threshold=1e-7, num_variables=2,
                          dataset_metadata=benchmark.metadata)

    return benchmark