Skip to content

Parameter Estimator Module

SRToolkit.evaluation.parameter_estimator

This module contains the ParameterEstimator class, which is used to estimate the parameters of an expression.

ParameterEstimator

Source code in SRToolkit/evaluation/parameter_estimator.py
class ParameterEstimator:
    def __init__(self, X: np.ndarray, y: np.ndarray, symbol_library: SymbolLibrary=SymbolLibrary.default_symbols(), **kwargs):
        """
        Initializes an instance of the ParameterEstimator class.

        Examples:
            >>> X = np.array([[1, 2], [8, 4], [5, 4], [7, 9], ])
            >>> y = np.array([3, 0, 3, 11])
            >>> pe = ParameterEstimator(X, y)
            >>> rmse, constants = pe.estimate_parameters(["C", "*", "X_1", "-", "X_0"])
            >>> print(rmse < 1e-6)
            True
            >>> print(1.99 < constants[0] < 2.01)
            True

        Args:
            X: The input data to be used in parameter estimation for variables. We assume that X is a 2D array
                with shape (n_samples, n_features).
            y: The target values to be used in parameter estimation.
            symbol_library: The symbol library to use. Defaults to SymbolLibrary.default_symbols().

        Keyword Arguments:
            method str: The method to be used for minimization. Currently, only "L-BFGS-B" is supported/tested. Default is "L-BFGS-B".
            tol float: The tolerance for termination. Default is 1e-6.
            gtol float: The tolerance for the gradient norm. Default is 1e-3.
            max_iter int: The maximum number of iterations. Default is 100.
            bounds List[float]: A list of two elements, specifying the lower and upper bounds for the constant values. Default is [-5, 5].
            initialization str: The method to use for initializing the constant values. Currently, only "random" and "mean" are supported. "random" creates a vector with random values
                                sampled within the bounds. "mean" creates a vector where all values are calculated as (lower_bound + upper_bound)/2. Default is "random".
            max_constants int: The maximum number of constants allowed in the expression. Default is 8.
            max_expr_length int: The maximum length of the expression. Default is -1 (no limit).

        Methods:
            estimate_parameters(expr: List[str]): Estimates the parameters of an expression by minimizing the error between the predicted and actual values.
        """
        self.symbol_library = symbol_library
        self.X = X
        self.y = y
        # self.stats = {"success": 0, "failure": 0, "steps": dict(), "num_constants": dict(), "failed_constants": dict()}

        self.estimation_settings = {
                "method": "L-BFGS-B",
                "tol": 1e-6,
                "gtol": 1e-3,
                "max_iter": 100,
                "bounds": [-5, 5],
                "initialization": "random", # random, mean
                "max_constants": 8,
                "max_expr_length": -1
        }

        if kwargs:
            self.estimation_settings.update(kwargs)

    def estimate_parameters(self, expr: List[str]) -> Tuple[float, np.ndarray]:
        """
        Estimates the parameters of an expression by minimizing the error between the predicted and actual values.

        Examples:
            >>> X = np.array([[1, 2], [8, 4], [5, 4], [7, 9], ])
            >>> y = np.array([3, 0, 3, 11])
            >>> pe = ParameterEstimator(X, y)
            >>> rmse, constants = pe.estimate_parameters(["C", "*", "X_1", "-", "X_0"])
            >>> print(rmse < 1e-6)
            True
            >>> print(1.99 < constants[0] < 2.01)
            True

        Args:
            expr: A list of strings representing the expression to be evaluated. The expression should include the
                  symbol 'C' for constants whose values need to be estimated.

        Returns:
            the root mean square error (RMSE) of the optimized expression.
            An array containing the optimized constant values.

        Notes:
            if the length of the expression exceeds the maximum allowed, NaN and an empty array are returned.
            If the number of constants in the expression exceeds the maximum allowed, NaN and an empty array are returned.
            If there are no constants in the expression, the RMSE is calculated directly without optimization.
        """
        num_constants = sum([1 for t in expr if t == "C"])
        if 0 <= self.estimation_settings["max_constants"] < num_constants:
            return np.nan, np.array([])

        if 0 <= self.estimation_settings["max_expr_length"] < len(expr):
            return np.nan, np.array([])

        executable_error_fn = expr_to_error_function(expr, self.symbol_library)

        if num_constants == 0:
            rmse = executable_error_fn(self.X, np.array([]), self.y)
            return rmse, np.array([])
        else:
            return self._optimize_parameters(executable_error_fn, num_constants)

    def _optimize_parameters(self, executable_error_fn: callable, num_constants: int) -> Tuple[float, np.ndarray]:
        """
        Optimizes the parameters of a given expression by minimizing the root mean squared error between the predicted and actual values.

        Parameters
        ----------
        executable_error_fn : callable
            A function that takes in the input values, the constant values, and the target values and returns the root mean squared error.
        num_constants : int
            The number of constants in the expression.

        Returns
        -------
        float
            The root mean square error of the optimized expression.
        np.ndarray
            An array containing the optimized constant values.
        """
        if self.estimation_settings["initialization"] == "random":
            x0 = np.random.rand(num_constants) * (self.estimation_settings["bounds"][1] - self.estimation_settings["bounds"][0]) + self.estimation_settings["bounds"][0]
        else:
            x0 = np.array([np.mean(self.estimation_settings["bounds"]) for _ in range(num_constants)])

        res = minimize(lambda c: executable_error_fn(self.X, c, self.y), x0, method=self.estimation_settings["method"],
                       tol=self.estimation_settings["tol"],
                       options={
                           "maxiter": self.estimation_settings["max_iter"],
                           "gtol": self.estimation_settings["gtol"]
                                },
                       bounds=[(self.estimation_settings["bounds"][0], self.estimation_settings["bounds"][1]) for _ in range(num_constants)])

        # if res.success:
        #     self.stats["success"] += 1
        # else:
        #     self.stats["failure"] += 1
        #     if num_constants in self.stats["failed_constants"]:
        #         self.stats["failed_constants"][num_constants] += 1
        #     else:
        #         self.stats["failed_constants"][num_constants] = 1
        #
        # if res.nit in self.stats["steps"]:
        #     self.stats["steps"][res.nit] += 1
        # else:
        #     self.stats["steps"][res.nit] = 1
        #
        # if num_constants in self.stats["num_constants"]:
        #     self.stats["num_constants"][num_constants] += 1
        # else:
        #     self.stats["num_constants"][num_constants] = 1

        return res.fun, res.x

__init__(X, y, symbol_library=SymbolLibrary.default_symbols(), **kwargs)

Initializes an instance of the ParameterEstimator class.

Examples:

>>> X = np.array([[1, 2], [8, 4], [5, 4], [7, 9], ])
>>> y = np.array([3, 0, 3, 11])
>>> pe = ParameterEstimator(X, y)
>>> rmse, constants = pe.estimate_parameters(["C", "*", "X_1", "-", "X_0"])
>>> print(rmse < 1e-6)
True
>>> print(1.99 < constants[0] < 2.01)
True

Parameters:

Name Type Description Default
X ndarray

The input data to be used in parameter estimation for variables. We assume that X is a 2D array with shape (n_samples, n_features).

required
y ndarray

The target values to be used in parameter estimation.

required
symbol_library SymbolLibrary

The symbol library to use. Defaults to SymbolLibrary.default_symbols().

default_symbols()

Other Parameters:

Name Type Description
method str

The method to be used for minimization. Currently, only "L-BFGS-B" is supported/tested. Default is "L-BFGS-B".

tol float

The tolerance for termination. Default is 1e-6.

gtol float

The tolerance for the gradient norm. Default is 1e-3.

max_iter int

The maximum number of iterations. Default is 100.

bounds List[float]

A list of two elements, specifying the lower and upper bounds for the constant values. Default is [-5, 5].

initialization str

The method to use for initializing the constant values. Currently, only "random" and "mean" are supported. "random" creates a vector with random values sampled within the bounds. "mean" creates a vector where all values are calculated as (lower_bound + upper_bound)/2. Default is "random".

max_constants int

The maximum number of constants allowed in the expression. Default is 8.

max_expr_length int

The maximum length of the expression. Default is -1 (no limit).

Functions:

Name Description
estimate_parameters

List[str]): Estimates the parameters of an expression by minimizing the error between the predicted and actual values.

Source code in SRToolkit/evaluation/parameter_estimator.py
def __init__(self, X: np.ndarray, y: np.ndarray, symbol_library: SymbolLibrary=SymbolLibrary.default_symbols(), **kwargs):
    """
    Initializes an instance of the ParameterEstimator class.

    Examples:
        >>> X = np.array([[1, 2], [8, 4], [5, 4], [7, 9], ])
        >>> y = np.array([3, 0, 3, 11])
        >>> pe = ParameterEstimator(X, y)
        >>> rmse, constants = pe.estimate_parameters(["C", "*", "X_1", "-", "X_0"])
        >>> print(rmse < 1e-6)
        True
        >>> print(1.99 < constants[0] < 2.01)
        True

    Args:
        X: The input data to be used in parameter estimation for variables. We assume that X is a 2D array
            with shape (n_samples, n_features).
        y: The target values to be used in parameter estimation.
        symbol_library: The symbol library to use. Defaults to SymbolLibrary.default_symbols().

    Keyword Arguments:
        method str: The method to be used for minimization. Currently, only "L-BFGS-B" is supported/tested. Default is "L-BFGS-B".
        tol float: The tolerance for termination. Default is 1e-6.
        gtol float: The tolerance for the gradient norm. Default is 1e-3.
        max_iter int: The maximum number of iterations. Default is 100.
        bounds List[float]: A list of two elements, specifying the lower and upper bounds for the constant values. Default is [-5, 5].
        initialization str: The method to use for initializing the constant values. Currently, only "random" and "mean" are supported. "random" creates a vector with random values
                            sampled within the bounds. "mean" creates a vector where all values are calculated as (lower_bound + upper_bound)/2. Default is "random".
        max_constants int: The maximum number of constants allowed in the expression. Default is 8.
        max_expr_length int: The maximum length of the expression. Default is -1 (no limit).

    Methods:
        estimate_parameters(expr: List[str]): Estimates the parameters of an expression by minimizing the error between the predicted and actual values.
    """
    self.symbol_library = symbol_library
    self.X = X
    self.y = y
    # self.stats = {"success": 0, "failure": 0, "steps": dict(), "num_constants": dict(), "failed_constants": dict()}

    self.estimation_settings = {
            "method": "L-BFGS-B",
            "tol": 1e-6,
            "gtol": 1e-3,
            "max_iter": 100,
            "bounds": [-5, 5],
            "initialization": "random", # random, mean
            "max_constants": 8,
            "max_expr_length": -1
    }

    if kwargs:
        self.estimation_settings.update(kwargs)

estimate_parameters(expr)

Estimates the parameters of an expression by minimizing the error between the predicted and actual values.

Examples:

>>> X = np.array([[1, 2], [8, 4], [5, 4], [7, 9], ])
>>> y = np.array([3, 0, 3, 11])
>>> pe = ParameterEstimator(X, y)
>>> rmse, constants = pe.estimate_parameters(["C", "*", "X_1", "-", "X_0"])
>>> print(rmse < 1e-6)
True
>>> print(1.99 < constants[0] < 2.01)
True

Parameters:

Name Type Description Default
expr List[str]

A list of strings representing the expression to be evaluated. The expression should include the symbol 'C' for constants whose values need to be estimated.

required

Returns:

Type Description
float

the root mean square error (RMSE) of the optimized expression.

ndarray

An array containing the optimized constant values.

Notes

if the length of the expression exceeds the maximum allowed, NaN and an empty array are returned. If the number of constants in the expression exceeds the maximum allowed, NaN and an empty array are returned. If there are no constants in the expression, the RMSE is calculated directly without optimization.

Source code in SRToolkit/evaluation/parameter_estimator.py
def estimate_parameters(self, expr: List[str]) -> Tuple[float, np.ndarray]:
    """
    Estimates the parameters of an expression by minimizing the error between the predicted and actual values.

    Examples:
        >>> X = np.array([[1, 2], [8, 4], [5, 4], [7, 9], ])
        >>> y = np.array([3, 0, 3, 11])
        >>> pe = ParameterEstimator(X, y)
        >>> rmse, constants = pe.estimate_parameters(["C", "*", "X_1", "-", "X_0"])
        >>> print(rmse < 1e-6)
        True
        >>> print(1.99 < constants[0] < 2.01)
        True

    Args:
        expr: A list of strings representing the expression to be evaluated. The expression should include the
              symbol 'C' for constants whose values need to be estimated.

    Returns:
        the root mean square error (RMSE) of the optimized expression.
        An array containing the optimized constant values.

    Notes:
        if the length of the expression exceeds the maximum allowed, NaN and an empty array are returned.
        If the number of constants in the expression exceeds the maximum allowed, NaN and an empty array are returned.
        If there are no constants in the expression, the RMSE is calculated directly without optimization.
    """
    num_constants = sum([1 for t in expr if t == "C"])
    if 0 <= self.estimation_settings["max_constants"] < num_constants:
        return np.nan, np.array([])

    if 0 <= self.estimation_settings["max_expr_length"] < len(expr):
        return np.nan, np.array([])

    executable_error_fn = expr_to_error_function(expr, self.symbol_library)

    if num_constants == 0:
        rmse = executable_error_fn(self.X, np.array([]), self.y)
        return rmse, np.array([])
    else:
        return self._optimize_parameters(executable_error_fn, num_constants)