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Motivation

Mathematical equations are an essential tools for understanding
relationships between variables in various scientific fields. Traditionally,
scientists derive these equations with experimentation and domain
knowledge. However, with recent advancements in machine learning
and generative modeling, we can accelerate this process and find
equations that fit the data better than hand-crafted ones.

Methodology

We utilize variational autoencoders to embed mathematical
expressions into a Euclidean vector space, incorporating the structural
properties of binary expression trees. This approach not only ensures
syntactic correctness but also enhances embedding efficiency. By
encoding syntactically similar expressions close together in the vector
space, we can efficiently explore the space of possible expressions
with optimization algorithms.

Our method encodes expression trees recursively, starting at the leaf
nodes and ending at the root node. We use a modified GRU cell to
generate a code for each node based on the codes of its descendants
and the symbol in the node. This encoding scheme improves
embedding efficiency by assigning the same code to subexpressions,
regardless of the rest of the expression.

Decoding is also performed recursively, starting at the root node and
ending at the leaf nodes. During decoding, we produce a symbol for
each node and recursively generate its descendants. For operators,
we generate both descendants; for functions, only the left descendant;
and for constants and variables, no descendants. The decoding cell
also uses a modified GRU cell that produces two codes as the output,
instead of one.

Figure 1: The EDHiE approach. In the first step, we train a HVAE model. In the
second step, we explore the latent space of the HVAE model with an evolutionary
algorithm. The red dot represents the best expression in a given iteration.
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Expression reconstruction

We show the generative power of the HVAE model by reconstructing
expressions that were not part of the training set. We encode an
expression into the latent space and decoding it back into an
expression. We then compared the two expressions with edit distance.
HVAE [3] significantly outperforms other approaches based on
variational autoencoders, while guaranteeing syntactic correctness.

Table 1: The out-of-sample reconstruction error and the percentages of syntactically
incorrect expressions generated by the three variational autoencoders.

HVAE GVAE CVAE
Dataset Edit distance Invalid Edit distance Invalid Edit distance Invalid
AE4-2k 0.076 (± 0.024) 0.0 (± 0.0) 3.959 (± 0.135) 0.2 (± 0.0) 3.873 (± 0.132) 33.8 (± 1.1)
Trig4-2k 0.119 (± 0.026) 0.0 (± 0.0) 3.199 (± 0.068) 0.0 (± 0.0) 3.619 (± 0.045) 48.3 (± 0.6)
AE5-15k 0.079 (± 0.014) 0.0 (± 0.0) 2.827 (± 0.280) < 0.1 (± 0.0) 1.547 (± 0.466) 3.5 (± 0.0)
Trig5-15k 0.093 (± 0.010) 0.0 (± 0.0) 1.489 (± 0.195) < 0.1 (± 0.0) 2.086 (± 0.346) 13.9 (± 0.0)
AE7-20k 0.501 (± 0.017) 0.0 (± 0.0) 5.201 (± 0.289) < 0.1 (± 0.0) 3.654 (± 0.349) 9.9 (± 0.0)
Trig7-20k 0.530 (± 0.036) 0.0 (± 0.0) 3.423 (± 0.467) < 0.1 (± 0.0) 3.660 (± 0.287) 26.3 (± 0.1)

Symbolic regression

Our approach, EDHiE, combines HVAE with an evolutionary algorithm.
Table below shows the performance of our approach compared to the
state-of-the-art approaches DSO [1] and PySR [2] on the Nguyen
symbolic regression benchmark. We see that our model successfully
reconstructs all equations and outperforms DSO and PySR.

Table 2: Comparison of the performance of the symbolic regression systems EDHiE,
DSO, and PySR on the ten Nguyen equations.

EDHiE (our) DSO [1] PySR [2]
Name Successful Mean R2 Evaluated Successful Mean R2 Evaluated Successful Mean R2

NG-1 10 1.00 (± 0.00) 573 (± 261) 10 1.00 (± 0.00) 4565 (± 327) 10 1.00 (± 0.00)
NG-2 10 1.00 (± 0.00) 5803 (± 4148) 10 1.00 (± 0.00) 12206 (± 9186) 10 1.00 (± 0.00)
NG-3 6 1.00 (± 0.01) 20931 (± 4858) 10 1.00 (± 0.00) 8053 (± 3766) 2 1.00 (± 0.01)
NG-4 3 1.00 (± 0.01) 21346 (± 4479) 8 1.00 (± 0.01) 32946 (± 15613) 0 0.99 (± 0.01)
NG-5 3 0.32 (± 0.45) 20615 (± 8394) 0 0.00 (± 0.00) NA 0 0.16 (± 0.15)
NG-6 8 0.88 (± 0.14) 12772 (± 7923) 1 0.59 (± 0.15) 49599 (± 0) 4 0.86 (± 0.13)
NG-7 8 1.00 (± 0.01) 19203 (± 3595) 10 1.00 (± 0.00) 22579 (± 10264) 7 0.99 (± 0.01)
NG-8 10 1.00 (± 0.00) 405 (± 174) 10 1.00 (± 0.00) 5521 (± 1779) 10 1.00 (± 0.00)
NG-9 8 0.95 (± 0.15) 7041 (± 3933) 2 0.60 (± 0.20) 39786 (± 28197) 10 1.00 (± 0.00)
NG-10 1 0.70 (± 0.17) 31863 (± 6970) 0 0.56 (± 0.10) NA 1 0.80 (± 0.16)
Total/Mean 66 0.89 (± 0.21) 61 0.78 (± 0.31) 54 0.88 (± 0.26)

Further work

In future work, we aim to improve our approach by encoding
semantically similar expressions close together rather than relying
solely on syntactic similarity. Additionally, we plan to explore more
powerful models, such as generative adversarial networks or diffusion
models, and extend our methodology to generate more complex
models, such as molecules.
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