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Abstract. Understanding how information propagates in real-life com-
plex networks yields a better understanding of dynamical processes such
as misinformation or epidemic spreading. With the recent resurgence of
graph neural networks as a powerful predictive methodology, many net-
work properties can be studied in terms of their predictability and as
such offer a novel view on the studied process, with the direct appli-
cation of fast predictions that are complementary to resource-intensive
simulations. We investigated whether graph neural networks can be used
to predict the effect of an epidemic, should it start from a given indi-
vidual (patient zero). We reformulate this problem as node regression
and demonstrate the high utility of network-based machine learning for
a better understanding of the spreading effects. By being able to predict
the effect of a given individual being the patient zero, the proposed ap-
proach offers potentially orders of magnitude faster risk assessment and
potentially aids the adopted epidemic spreading analysis techniques.
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1 Introduction

The spread of information and disease is a common phenomenon that has a lot
of practical and sometimes life-saving applications. One of these applications is
the creation of better strategies for stopping the spreading of misinformation
on social media or an epidemic. Further, companies can analyze spreading to
create better strategies for marketing their product [6, 19]. Spreading analysis
can also be suitable for analysis of e.g., fire spreading, implying large practical
value in terms of insurance cost analysis [8]. Analysis of spreading is commonly
studied via extensive simulations [11]. Here, the ideas from statistical mechanics
are exploited to better understand both the extent of spreading, as well as its
speed [2].

Albeit offering high utility, reliable simulations of spreading processes can be
expensive on larger networks, which we believe can be addressed by the employ-
ment of machine learning-aided modelling [29]. The contributions of this work
are multifold and can be summarized as follows.

1. We re-formulate the task of identification of the spreading effect from a given
node into a node regression problem.
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2. The prediction problem is addressed with state-of-the-art graph neural
network-based approaches, as well as a simpler, centrality-based approach
proposed as a part of this work.

3. Consistent predictive capability is demonstrated across multiple real-life net-
works, demonstrating that graph neural network-based approaches can serve
as a complementary, highly efficient analysis tool when studying information
spreading.

4. A methodology is proposed that performs notably better than the random
baseline on the datasets we tested.

5. We demonstrate how individual predictions of the obtained models can be
explained via the game-theoretic explanation tool SHAP [17].

The remainder of this work is structured as follows. In Section 2, we discuss the
related work which led to the proposed approach. Next, we re-formulate the task
and show its importance in Section 3. We propose a new approach based on node
centralities to solve the re-formulated task in Section 4. In Section 5 we present
the datasets, experimental setting and results of our empirical evaluation. We
conclude the paper in Section 6.

2 Related work

In the following section, we discuss the relevant related work. We begin by dis-
cussing the notion of contagion processes, followed by an overview of graph
neural networks.

2.1 Analysis of spreading processes

The study of spreading processes on networks is a lively research endeavour [19].
Broadly, spreading processes can be split into two main branches, namely, the
simulation of epidemics and opinion dynamics. The epidemic spreading models
can be classical or network-based. Here, the classical models are for example sys-
tems of differential equations that do not account for a given network’s topology.
Throughout this work, we are interested in extensions of such models to real-life
network settings. One of the most popular spreading models on networks is the
Susceptible-Infected-Recovered (SIR) [10] model. The spread of the pandemic
in the SIR model is dictated by parameters β known as the infection rate and
γ known as the recovery rate. Nodes in this model can have one of three states
(Susceptible, Infected, Recovered).

SIR assumes that if a susceptible node comes into contact with an infected
one during a generic iteration, it becomes infected with probability β. In each
iteration after getting infected, a node can recover with probability γ (the only
transition allowed are S to I to R).

Other related models include, for example, SEIR, SEIS, SWIR3. Further, one
can also study the role of cascades [9] or the Threshold model [4].

3 Where S-Susceptible, I-Infected, R-Recovered, E-Exposed and W-Weakened.
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2.2 Machine learning on networks

Learning by propagating information throughout a given network has already
been considered by the approaches such as label propagation [30]. However, in
recent years, the approaches that jointly exploit both the adjacency structure
of a given network alongside features assigned to its nodes are becoming preva-
lent in the network learning community. The so-called graph neural networks
have re-surfaced with the introduction of the Graph Convolutional Networks
(GCN) [13]; an idea where the normalized adjacency matrix is directly multiplied
with the feature space and effectively represents a neural network layer. Multiple
such layers could be stacked to obtain better approximation power/performance.
One of the most recent methods from this branch are the Graph Attention Net-
works [28], an extension of GCNs with the notion of neural attention. Here, part
of the neural network focuses on particular parts of the adjacency space, offering
more robust and potentially better performance.

Albeit being in widespread use, graph neural networks are not necessarily the
most suitable choice when learning solely from the network adjacency structure.
For such tasks, methods such as node2vec [5], SGE [26] and DeepWalk [21] were
developed. This branch of methods corresponds to what we refer to as structural
representation learning. In our work, we focus mostly on learning this type of
representations using network centrality information.

Note that although graph neural networks are becoming the prevailing method-
ology for learning from feature-rich complex networks, it is not clear whether
they perform competitively to the more established structural methods if the
feature space is derived solely from a given network’s structure.

3 Task formulation

When analysing an epidemic there are three main pieces of information that give
us most insight about how severe an epidemic was. The first crucial information
is when an epidemic reaches the peak (most nodes infected) since we are less
likely to be able to stop an epidemic when the peak is reached too quickly. This
information is especially important when trying to find a cure for a disease or
trying to stop misinformation on social media. Related to this, we usually want
to know, how many nodes will be infected when the epidemic reaches its peak.
When the maximum number of people infected by some disease is high, there
might not be enough beds or medicine for everyone. In contrast, companies might
want to create marketing campaigns on platforms such as Twitter and target
specific users to reach a certain number of retweets that are needed to become
trending. Another important insight into an epidemic is how many people get
infected. If a scam on the internet reaches a lot of people there is a greater chance
that more people will fall for it.

In our work, we focus on predicting the maximum number of infected nodes
and the time this number is reached. We create target data by simulating epi-
demics from each node with SIR diffusion model and identifying the number, as
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Fig. 1: Overview of the proposed methodology.

well as the time when the maximum number of nodes are infected. We aggregate
the generated target data by taking the mean values for each node. In the end,
we preprocess this data by normalizing it.

4 Proposed methodology

In this section, we present the creation of target data and summarize central-
ities and learners used for the regression task. An overview of the proposed
methodology can be seen in Figure 1. The figure shows two branches. On the
upper branch, simulations are created and transformed into target data, while
the node representation is learned on the lower branch. After this, a regression
model is trained with data from both branches and used to generate predictions
for the remaining (unknown) nodes.

The initial part of the methodology addresses the issue of input data gen-
eration. Intuitively, the first step simulates epidemic spreading from individual
nodes of a given network to assess both the time required to reach the maximum
number of infected, as well as the number itself. In this work, we leverage the
widely used SIR model [10] to simulate epidemics, formulated as follows.

dS

dt
= −β · S · I

N
dI

dt
=
β · S · I
N

− γ · I

R

dt
= γ · I,
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where S represents the number of susceptible, R the number of recovered and I
the number of infected individuals. Spreading is governed by input parameters γ
and β. The SIR model is selected due to many existing and optimized implemen-
tations that are adapted from systems of differential equations to networks [6].
We use NDlib [23] to simulate epidemics based on the SIR diffusion model.

Target data creation results in two real values for each node. We attempt
to predict this two values. The rationale for the construction of such predictive
models is, they are potentially much faster than simulating multiple processes
for each node (prediction time is the bottleneck) and can give more insight into
why some nodes are more ”dangerous”. The predictive task can be formulated
as follows. Let G = (V,E) represent the considered network. We are interested
in finding the mapping f : V → R+, such that this mapping maps from the set
of nodes V to the set of real values that represent e.g., the maximum number of
infected individuals if the spreading process is started from a given node u ∈ V .
Thus, f corresponds to node regression.

The models we considered can broadly be split into two main categories;
graph neural networks and propositional learners. The main difference between
the two is that the graph neural network learners, such as GAT [28] and GIN [31]
simultaneously exploit both structure of a network, as well as node features,
whilst the propositional learners take as input only the constructed feature space
(and not the adjacency matrix). As an example, the feature space is passed
throughout the GIN’s structure via the update rule that can be stated as:

h(k)
v = MLP(k)

((
1 + ε(k)

)
· h(k−1)

v +
∑

u∈V (v)

h(k−1)
u

)
,

where MLP corresponds to a multilayer perceptron, ε a hyperparameter, h(k)
u

the node u’s representations at layer k and V (v) the v-th node’s neighbors. We
test both graph neural networks and propositional learners as it is to our knowl-
edge not clear, whether direct incorporation of the adjacency matrix offers any
superior performance, as the graph neural network models are computationally
more expensive. The summary of considered learners is offered in Table 1.

As the considered complex networks do not possess node attributes, we next
discuss which features, derived solely from network structure were used in the
considered, state-of-the-art implementations of GAT [28] and GIN [31]. Further,
we also test models where only the constructed structural features are considered,
as well a standalone method capable of learning node representations, combined
with the XGBoost [1] classifier. In this work, we explored whether centrality-
based descriptions of nodes are suitable for the considered learning task. The
rationale for selecting such features is, they are potentially fast to compute and
entail global relation of a given node w.r.t. the remaining part of the networks.
The centralities, computed for each node are summarized in Table 2. After cal-
culating these centralities, we normalize and concatenate them to create the
final features. This features together with XGBoost classifier are referred to as
CABoost in Section 5.3, which is considered one of the contributions of this
work.



6 Sebastian Mežnar

Table 1: Summary of the considered learners with descriptions. Here, A denotes
the adjacency matrix and F the feature matrix.

Input Learner Method description

A,F GAT Graph Attention Networks
A,F GIN Graph Isomorphism Networks
A node2vec + XGBoost node2vec-based features + XGBoost
F CABoost (our) XGBoost trained solely on centrality based features

Table 2: Summary of the centralities considered in our work.

Centrality
Time

complexity
Description

Degree centrality [22] O(|E|) The number of edges of a given node

Eigenvector centrality [22] O(|V |3)

Importance of the node, where nodes are
more important if they are connected to

other important nodes. This can be
calculated using the eigenvectors of the

adjacency matrix.

PageRank [20] O(|E|) Probability that a random walker
is at a given node.

Average Out-degree O(|V | · w · s)
The average out-degree of nodes

encountered during w random walks
of mean length s

Hubs and Authorities
(HITS) [14]

O(|E|)

HITS is a link analysis algorithm that
assigns two scores to each node.

Authority score represents how important
a node is and the hub score represents
how well a node is connected to other

important nodes.

During model training we minimized the mean squared error between the
observed states (f(u)) and the predictions (yu); stated for the u-th node as

MSE = 1/|N |
∑
u∈N

(f(u)− yu)2.

To summarize, we learn network features with fast algorithms and use them
together with GIN, GAT and XGBoost learners to minimize the mean squared
error between predictions and data we make using simulations on part of the
network. We next present the evaluation process and results of this methodology.

5 Empirical evaluation

In this section, we show the empirical results of our approach and compare it to
other baselines. We also present how predictions from CABoost model can be
explained using SHAP [16].
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5.1 Baselines

We compared the results of proposed method to the following 4 baselines:

– Random baseline creates an embedding of size |N |×64 with random numbers
drawn from Unif(0, 1).

– node2vec [5] learns a low dimensional representation of nodes that maximizes
the likelihood of neighborhood preservation using random walks. During
testing, we use the default parameters.

– GAT [28] includes attention mechanism that helps learn the importance of
neighboring nodes. In our tests, we use the implementation from PyTorch
Geometric [3].

– GIN [31] learns a representation that can provably achieve the maximum
discriminative power. In our tests, we use the implementation from PyTorch
Geometric [3].

For comparison we also add the averaged simulation error. We calculate this
error with the MSE formula, where we use the mean absolute difference between
the value we get from simulations and the mean value for that node as f(u) and
0 as yu. This baseline corresponds to a situation, where only a single simulation
would be used to approximate the expected value of multiple ones (the goal of
this work).

5.2 Experimental setting

For testing4, we used datasets: Hamsterster [7], Advogato [18], Wikipedia Vote [15]
and FB Public Figures [25], taken from the Network Repository website [24].
Some basic statistics of the networks we used can be seen in Table 3. Two net-
works used during testing are visualized in Figure 2. The network nodes in this
figure are colored based on the values of the target variables.

Table 3: Basic statistics of the networks used for testing.
Name Nodes Edges Components

Wikipedia Vote [15] 889 2914 1
Hamsterster [7] 2426 16630 148
Advogato [18] 6551 43427 1441
FB Public Figures [25] 11565 67114 1

We used the following approach to test the proposed method as well as base-
lines mentioned in Section 5.1. We created the target data by simulating five
epidemics starting from each node of every dataset. We created each simulation
using the SIR diffusion model from the NDlib [23] Python library with param-
eters β = 5% and γ = 0.5%. We then create the target variables by identifying

4 That can be found at https://github.com/smeznar/Epidemic-spreading-CN2020.



8 Sebastian Mežnar

Fig. 2: Visualization of Advogato (left) and FB Public Figures (right) networks.
The color represents the target value we get when starting the spreading from a
given node. Color on Advogato dataset represents the time needed to reach the
peak while on FB Public Figures dataset maximum number of infected nodes is
shown. Blue colors represent low values while red ones represent high ones.

and aggregating the maximum number of infected nodes and the time when this
happens. We use these variables to test methods using five-fold cross-validation.
We used XGBoost [1] with default parameters as the regression model with pro-
posed features based on the mentions centralities, the random baseline and the
node2vec [5] baseline. Baselines GIN and GAT were trained for 200 epochs using
the Adam optimizer [12].

5.3 Results

The results of the evaluation described in Section 5.2 are presented in Tables 4
and 5. We can see that in most cases both time and the maximum number of
infected nodes can be predicted significantly better by using information about
the structure of the network.

Observing results in Table 4 we see that overall CABoost achieves best re-
sults and is beaten only on the Wiki vote dataset by GAT and the Hamsterster
dataset by GIN. We can further see that although node2vec does not achieve the
best score on any dataset, it consistently achieves results that are comparable
to CABoost. The biggest improvement over the random baseline can be seen on
datasets Hamsterster and Advogato that have more than one connected com-
ponents. We can also see that only GAT achieves a result that is significantly
better than the random baseline on the Wiki vote dataset.

The results in Table 5 are very similar to those of showcased in Table 4. Here
CABoost performs even better and is outperformed only by GIN on the Wiki
vote dataset. We can see that when predicting time, random baseline performs
significantly worse than all other baselines on all datasets but that overall these
predictions are better than when the maximum number of infected nodes is being
predicted.

We can see on all datasets that prediction with such learners is more beneficial
than creating only one simulation, further showing their usefulness.
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Table 4: Cross-validation results for maximum number of infected node.
Wiki vote Hamsterster Advogato FB public figures

Random 0.0191 (±0.0046) 0.1633 (±0.0123) 0.2052 (±0.0055) 0.0144 (±0.0014)
node2vec+XGBoost 0.0200 (±0.0034) 0.0060 (±0.0019) 0.0073 (±0.0010) 0.0127 (±0.0009)
GAT 0.0149 (±0.0039) 0.0460 (±0.0015) 0.0653 (±0.0079) 0.0129 (±0.0009)
GIN 0.0234 (±0.0078) 0.0042 (±0.0006) 0.0253 (±0.0195) 0.0116 (±0.0007)
CABoost (our) 0.0187 (± 0.0040) 0.0045 (±0.0012) 0.0067 (±0.0012) 0.0114 (±0.0011)
Simulation error (averaged) 0.0486 (± 0.0481) 0.0083 (± 0.0223) 0.0107 (±0.0251) 0.0546 (±0.0375)

Table 5: Cross-validation results for time when most nodes are infected.
Wiki vote Hamsterster Advogato FB public figures

Random 0.0168 (±0.0015) 0.0168 (±0.0013) 0.0390 (±0.0014) 0.0094 (±0.0004)
node2vec+XGBoost 0.0126 (±0.0010) 0.0062 (±0.0005) 0.0053 (±0.0007) 0.0054 (±0.0004)
GAT 0.0118 (±0.0010) 0.0125 (±0.0008) 0.0190 (±0.0015) 0.0066 (±0.0003)
GIN 0.0096 (±0.0012) 0.0045 (±0.0005) 0.0126 (±0.0100) 0.0045 (±0.0005)
CABoost (our) 0.0103 (±0.0017) 0.0044 (±0.0007) 0.0038 (±0.0007) 0.0042 (±0.0003)
Simulation error (averaged) 0.0168 (± 0.0630) 0.0063 (± 0.0467) 0.0066 (±0.0352) 0.0093 (±0.0424)

5.4 Interpretation of a prediction

We can explain predictions using model explanation approaches such as SHapley
Additive exPlanations (SHAP) [16, 27]. SHAP is a game-theoretic approach for
explaining classification and regression models. The algorithm perturbs subsets
of input features to take into account the interactions and redundancies between
them. The explanation model can then be visualized, showing how the feature
values of an instance impact a prediction.

An example of such an explanation is shown in Figure 3. We can see that
both HITS centralities do not impact the explanation much. We can also see that
small values of PageRank impact the prediction positively, while small values of
Eigenvector and Degree centrality impact the prediction negatively. The above-
average out-degree centrality also impacts the model negatively.

6 Discussion and conclusions

In this paper, we showcase how contemporary graph neural network-based meth-
ods can be used for fast estimation of epidemic spreading effect from a given node.
We showed that by re-formulating the task as node regression, we can obtain
realistic estimates much faster than by performing computationally expensive
simulations, even though such simulations are initially used to fine-tune the ma-
chine learning models. Further, employment of predictive modeling instead on
relying on a single simulation also showed promising results.

We show that while graph neural networks outperform the random baseline
and sometimes give us great results, centrality scores and node2vec feature rep-
resentation coupled with XGBoost mostly outperform them. We also see that
machine learning models might overall give a more accurate representation of an
epidemic than data gathered from a small number of simulations.
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Fig. 3: An example of a model explanation for an instance. Blue arrows indicate
how much the prediction is lowered by some feature value, while the red ones
indicate how much it is raised. Prediction starts at models expected value 0.354
and finishes at 0.328. Features and their values are shown on the left. The vi-
sualization shows for example that the prediction dropped from 0.350 to 0.328
because of the low value of degree centrality.

An obvious limitation of the proposed task is that the spreading is probabilis-
tic and even the best classifiers might make significant errors. Similarly when
observing prediction results of the maximum number of infected nodes one must
be careful since we predict an average outcome from some node and not the true
maximum. This gives us the ability to predict which nodes are most ”danger-
ous” as patient zero. When trying to predict an outcome of an epidemic that
has already spread, one must adjust data accordingly and get rid of simulations
where epidemics have not spread.

In further work, we plan to research different centralities and algorithms to
better describe network structure and achieve more accurate results. Another
aspect of our interest is how the proposed method scales and how well it works
on different types of networks. We also plan to further research the ability to
solve such tasks by using unsupervised algorithms.
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26. Blaž Škrlj, Nada Lavrač, and Jan Kralj. Symbolic Graph Embedding Using Fre-
quent Pattern Mining. In Petra Kralj Novak, Tomislav Šmuc, and Sašo Džeroski,
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